Spaces:
Sleeping
Sleeping
| import os | |
| import shutil | |
| import tempfile | |
| import zipfile | |
| import rarfile | |
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| from paddleocr import PaddleOCR | |
| from PIL import Image | |
| import rarfile | |
| rarfile.UNRAR_TOOL = "unrar" | |
| import psutil | |
| import time | |
| ocr = PaddleOCR(use_angle_cls=True, lang='en', det_model_dir='models/det', rec_model_dir='models/rec', cls_model_dir='models/cls') | |
| def classify_background_color(avg_color, white_thresh=230, black_thresh=50, yellow_thresh=100): | |
| r, g, b = avg_color | |
| if r >= white_thresh and g >= white_thresh and b >= white_thresh: | |
| return (255, 255, 255) | |
| if r <= black_thresh and g <= black_thresh and b <= black_thresh: | |
| return (0, 0, 0) | |
| if r >= yellow_thresh and g >= yellow_thresh and b < yellow_thresh: | |
| return (255, 255, 0) | |
| return None | |
| def sample_border_color(image, box, padding=2): | |
| h, w = image.shape[:2] | |
| x_min, y_min, x_max, y_max = box | |
| x_min = max(0, x_min - padding) | |
| x_max = min(w-1, x_max + padding) | |
| y_min = max(0, y_min - padding) | |
| y_max = min(h-1, y_max + padding) | |
| top = image[y_min:y_min+padding, x_min:x_max] | |
| bottom = image[y_max-padding:y_max, x_min:x_max] | |
| left = image[y_min:y_max, x_min:x_min+padding] | |
| right = image[y_min:y_max, x_max-padding:x_max] | |
| border_pixels = np.vstack((top.reshape(-1, 3), bottom.reshape(-1, 3), | |
| left.reshape(-1, 3), right.reshape(-1, 3))) | |
| if border_pixels.size == 0: | |
| return (255, 255, 255) | |
| median_color = np.median(border_pixels, axis=0) | |
| return tuple(map(int, median_color)) | |
| # def detect_text_boxes(image): | |
| # results = ocr.ocr(image, cls=True) | |
| # if not results or not results[0]: | |
| # return [] | |
| # boxes = [] | |
| # for line in results[0]: | |
| # box, (text, confidence) = line | |
| # if text.strip(): | |
| # x_min = int(min(pt[0] for pt in box)) | |
| # x_max = int(max(pt[0] for pt in box)) | |
| # y_min = int(min(pt[1] for pt in box)) | |
| # y_max = int(max(pt[1] for pt in box)) | |
| # boxes.append(((x_min, y_min, x_max, y_max), text, confidence)) | |
| # return boxes | |
| def detect_text_boxes(image): | |
| results = ocr.ocr(image, cls=True) | |
| boxes = [] | |
| if results and results[0]: | |
| for line in results[0]: | |
| box, (text, confidence) = line | |
| if text.strip(): | |
| x_min = int(min(pt[0] for pt in box)) | |
| x_max = int(max(pt[0] for pt in box)) | |
| y_min = int(min(pt[1] for pt in box)) | |
| y_max = int(max(pt[1] for pt in box)) | |
| boxes.append(((x_min, y_min, x_max, y_max), text, confidence)) | |
| else: | |
| print("No text detected in the image.") | |
| return boxes | |
| def remove_text_dynamic_fill(img_path, output_path): | |
| image = cv2.imread(img_path) | |
| if image is None: | |
| return | |
| if len(image.shape) == 2: | |
| image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
| elif image.shape[2] == 1: | |
| image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
| else: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| boxes = detect_text_boxes(image) | |
| for (bbox, text, confidence) in boxes: | |
| if confidence < 0.4 or not text.strip(): | |
| continue | |
| x_min, y_min, x_max, y_max = bbox | |
| height = y_max - y_min | |
| padding = 2 if height <= 30 else 4 if height <= 60 else 6 | |
| x_min_p = max(0, x_min - padding) | |
| y_min_p = max(0, y_min - padding) | |
| x_max_p = min(image.shape[1]-1, x_max + padding) | |
| y_max_p = min(image.shape[0]-1, y_max + padding) | |
| sample_crop = image[y_min_p:y_max_p, x_min_p:x_max_p] | |
| avg_color = np.mean(sample_crop.reshape(-1, 3), axis=0) | |
| fill_color = classify_background_color(avg_color) | |
| if fill_color is None: | |
| fill_color = sample_border_color(image, (x_min, y_min, x_max, y_max)) | |
| cv2.rectangle(image, (x_min_p, y_min_p), (x_max_p, y_max_p), fill_color, -1) | |
| image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| cv2.imwrite(output_path, image) | |
| def process_cbz_cbr(files): | |
| final_output = tempfile.mkdtemp() | |
| wait_for_cpu() | |
| for file_path in files: | |
| if file_path.endswith(".cbz"): | |
| with zipfile.ZipFile(file_path, 'r') as archive: | |
| extract_dir = tempfile.mkdtemp() | |
| archive.extractall(extract_dir) | |
| elif file_path.endswith(".cbr"): | |
| with rarfile.RarFile(file_path,'r') as archive: | |
| extract_dir = tempfile.mkdtemp() | |
| archive.extractall(extract_dir) | |
| else: | |
| continue | |
| for root, _, imgs in os.walk(extract_dir): | |
| for img in imgs: | |
| if img.lower().endswith(('.jpg', '.jpeg', '.png')): | |
| input_path = os.path.join(root, img) | |
| output_path = os.path.join(final_output, os.path.basename(img)) | |
| remove_text_dynamic_fill(input_path, output_path) | |
| # Create output zip | |
| zip_buffer = tempfile.NamedTemporaryFile(delete=False, suffix=".zip") | |
| with zipfile.ZipFile(zip_buffer.name, 'w', zipfile.ZIP_DEFLATED) as zf: | |
| for root, _, files in os.walk(final_output): | |
| for file in files: | |
| zf.write(os.path.join(root, file), arcname=file) | |
| return zip_buffer.name | |
| import os | |
| import zipfile | |
| import rarfile | |
| import tempfile | |
| import shutil | |
| def convert_cbr_to_cbz(cbr_path): | |
| temp_dir = tempfile.mkdtemp() | |
| cbz_path = cbr_path.replace('.cbr', '.cbz') | |
| return cbz_path | |
| def wait_for_cpu(threshold=90, interval=3, timeout=30): | |
| start = time.time() | |
| while psutil.cpu_percent(interval=1) > threshold: | |
| print("High CPU usage detected, waiting...") | |
| time.sleep(interval) | |
| if time.time() - start > timeout: | |
| print("Timed out waiting for CPU to cool down.") | |
| break | |
| demo = gr.Interface( | |
| fn=process_cbz_cbr, | |
| inputs=gr.File(file_types=[".cbz"], file_count="multiple", label="Upload only .cbz Comic Files"), | |
| outputs=gr.File(label="Download Cleaned Zip"), | |
| concurrency_limit=1, | |
| title="Comic Cleaner from .CBZ", | |
| description="Upload .cbz comics. The app extracts, cleans (removes text), and gives back a zip of cleaned images." | |
| ) | |
| demo.launch() | |