|
images_dir = "images" |
|
import io |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
from PIL import Image |
|
import torch |
|
torch.cuda.empty_cache() |
|
|
|
from fastapi import FastAPI, File, Form,UploadFile,HTTPException |
|
|
|
app=FastAPI() |
|
|
|
app.cor |
|
|
|
def run_model(image,text_input): |
|
torch.cuda.empty_cache() |
|
model_id= "Qwen/Qwen2-VL-7B-Instruct-AWQ" |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
model_id , torch_dtype=torch.float16, device_map="cuda:0" |
|
) |
|
min_pixels = 256*28*28 |
|
max_pixels = 1280*28*28 |
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct-AWQ", min_pixels=min_pixels, max_pixels=max_pixels) |
|
|
|
torch.cuda.empty_cache() |
|
image_path = Image.open(image) |
|
print(image_path) |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": image_path, |
|
}, |
|
{"type": "text", "text": text_input}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=1024) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
return output_text[0] |
|
|
|
|
|
@app.post("/call_qwen_model") |
|
async def call_model(file: UploadFile = File(...),json_str: str = Form(...)): |
|
try: |
|
request_object_content = await file.read() |
|
img = io.BytesIO(request_object_content) |
|
output = run_model(img, json_str) |
|
return {"output": output} |
|
except Exception as e : |
|
raise HTTPException (f"Error: {e}") |