GPT-LANG / app.py
SnJForever
update
6981e3b
raw
history blame
16 kB
import gradio as gr
import openai
import requests
import csv
import uuid
import whisper
import azure.cognitiveservices.speech as speechsdk
import base64
import os
from polly_utils import PollyVoiceData, NEURAL_ENGINE
from azure_utils import AzureVoiceData
POLLY_VOICE_DATA = PollyVoiceData()
AZURE_VOICE_DATA = AzureVoiceData()
WHISPER_DETECT_LANG = "Chinese (Mandarin)"
WHISPER_MODEL = whisper.load_model("tiny")
print("WHISPER_MODEL", WHISPER_MODEL)
LOOPING_TALKING_HEAD = "videos/Michelle.mp4"
TALKING_HEAD_WIDTH = "192"
MAX_TALKING_HEAD_TEXT_LENGTH = 100
prompt_templates = {"Default ChatGPT": ""}
def get_empty_state():
return {"total_tokens": 0, "messages": []}
def download_prompt_templates():
url = "https://raw.githubusercontent.com/f/awesome-chatgpt-prompts/main/prompts.csv"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
prompt_templates[act] = prompt
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_token_change(user_token):
openai.api_key = user_token
def on_type_change(type):
print(type)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
# UNCOMMENT TO USE WHISPER
def transcribe(aud_inp, whisper_lang):
if aud_inp is None:
return ""
aud = whisper.load_audio(aud_inp)
aud = whisper.pad_or_trim(aud)
mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device)
_, probs = WHISPER_MODEL.detect_language(mel)
options = whisper.DecodingOptions()
if whisper_lang != WHISPER_DETECT_LANG:
whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code(whisper_lang)
options = whisper.DecodingOptions(language=whisper_lang_code)
result = whisper.decode(WHISPER_MODEL, mel, options)
print("result.text", result.text)
result_text = ""
if result and result.text:
result_text = result.text
return result_text
def create_html_video(file_name, width):
temp_file_url = "/file=" + tmp_file.value['name']
html_video = f'<video width={width} height={width} autoplay muted loop><source src={temp_file_url} type="video/mp4" poster="Michelle.png"></video>'
return html_video
def ToBase64(file):
with open(file, 'rb') as fileObj:
image_data = fileObj.read()
base64_data = base64.b64encode(image_data)
return base64_data.decode()
def do_html_audio_speak_azure(words_to_speak):
html_audio = '<pre>no audio</pre>'
speech_key=os.environ["SPEECH_KEY"]
service_region=os.environ["SERVICE_REGION"]
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
# Note: the voice setting will not overwrite the voice element in input SSML.
speech_config.speech_synthesis_voice_name = "zh-CN-XiaoxiaoNeural"
# 设置输出的音频文件路径和文件名
audio_config = speechsdk.audio.AudioOutputConfig(filename="audios/tempfile.mp3")
text = words_to_speak
# use the default speaker as audio output.
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
result = speech_synthesizer.speak_text_async(text).get()
# Check result
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
print("Speech synthesized for text [{}]".format(text))
try:
temp_aud_file = gr.File("audios/tempfile.mp3")
temp_aud_file_url = "/file=" + temp_aud_file.value['name']
html_audio = f'<audio autoplay><source src={temp_aud_file_url} type="audio/mp3"></audio>'
except IOError as error:
# Could not write to file, exit gracefully
print(error)
return None, None
elif result.reason == speechsdk.ResultReason.Canceled:
cancellation_details = result.cancellation_details
print("Speech synthesis canceled: {}".format(cancellation_details.reason))
if cancellation_details.reason == speechsdk.CancellationReason.Error:
print("Error details: {}".format(cancellation_details.error_details))
# The response didn't contain audio data, exit gracefully
print("Could not stream audio")
return None, None
return html_audio, "audios/tempfile.mp3"
def do_html_video_speak_sad_talker(temp_aud_file):
GRADIO_URL=os.environ["GRADIO_URL"]
img_data = ToBase64("images/Michelle.png")
audio_data = ToBase64(temp_aud_file)
response = requests.post(GRADIO_URL+"/run/sad_talker", json={
"data": [
"data:image/png;base64,"+img_data,
{"name":"audio.wav","data":"data:audio/wav;base64,"+audio_data},
"crop",
False,
False,
]
},timeout=3000)
print(response.text)
res = response.json()
data = res["data"]
print(data)
video_rul = GRADIO_URL+"/file=" + data[0][0]['name']
print(video_rul)
html_video = '<pre>no video</pre>'
# with open('videos/tempfile.mp4', 'wb') as f:
# f.write(response_stream.read())
# temp_file = gr.File("videos/tempfile.mp4")
# temp_file_url = "/file=" + temp_file.value['name']
temp_file_url=video_rul
html_video = f'<video width={TALKING_HEAD_WIDTH} height={TALKING_HEAD_WIDTH} autoplay><source src={temp_file_url} type="video/mp4" poster="Michelle.png"></video>'
return html_video, "videos/tempfile.mp4"
def submit_message(type_select,user_token, prompt, prompt_template, temperature, max_tokens, context_length, state):
print(type_select)
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state
prompt_template = prompt_templates[prompt_template]
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template }]
prompt_msg = { "role": "user", "content": prompt }
if not type_select:
history.append(prompt_msg)
history.append({
"role": "system",
"content": "Error: Type is not set."
})
return '', [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: 0", state
if not user_token:
history.append(prompt_msg)
history.append({
"role": "system",
"content": "Error: OpenAI API Key is not set."
})
return '', [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: 0", state
html_video, temp_file, html_audio, temp_aud_file = None, None, None, None
try:
if type_select=='TEXT':
text_history = [x for x in history if x['role'] != 'image' ]
print(text_history)
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + text_history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
print(prompt_msg,completion.choices[0].message.to_dict())
history.append(prompt_msg)
history.append(completion.choices[0].message.to_dict())
state['total_tokens'] += completion['usage']['total_tokens']
answer = completion.choices[0].message.to_dict()["content"]
if len(answer) <= MAX_TALKING_HEAD_TEXT_LENGTH:
# html_video, temp_file = do_html_video_speak(output, translate_to)
html_audio, temp_aud_file = do_html_audio_speak_azure(answer)
try:
html_video, temp_file = do_html_video_speak_sad_talker(temp_aud_file)
html_audio = None
except Exception as e:
temp_file = LOOPING_TALKING_HEAD
html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH)
else:
temp_file = LOOPING_TALKING_HEAD
html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH)
html_audio, temp_aud_file = do_html_audio_speak_azure(answer)
elif type_select=='IMAGE':
response = openai.Image.create(
prompt=prompt,
n=1,
size="512x512"
)
print("image result ",response)
image_url = response['data'][0]['url']
history.append({ "role": "image", "content": prompt })
history.append({ "role": "image", "content": image_url })
state['total_tokens'] += 0
temp_file = LOOPING_TALKING_HEAD
html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH)
except Exception as e:
# history.append(prompt_msg)
history.append({
"role": "system",
"content": f"Error: {e}"
})
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
print(1,chat_messages)
chat_messages=[]
for i in range(0, len(history)-1, 2):
print(history[i])
if(history[i]['role'] == 'image'):
picture_name = str(uuid.uuid1())+'.png'
reponse = requests.get(history[i+1]['content'])
with open('/home/user/app/'+picture_name,'wb') as f:
f.write(reponse.content)
image_his = {'name': '/home/user/app/'+picture_name, 'mime_type': 'image/png', 'alt_text': None, 'data': None, 'is_file': True}
chat_messages.append((history[i]['content'],image_his))
else:
chat_messages.append((history[i]['content'], history[i+1]['content']))
print(2,chat_messages)
return '', chat_messages, total_tokens_used_msg, state, html_video, temp_file, html_audio, temp_aud_file
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## OpenAI ChatGPT chat
Using the ofiicial API (gpt-3.5-turbo model)
""",
elem_id="header")
with gr.Row():
with gr.Column(scale=1, min_width=TALKING_HEAD_WIDTH, visible=True):
# speak_text_cb = gr.Checkbox(label="Enable speech", value=False)
# speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state],
# outputs=[speak_text_state])
my_file = gr.File(label="Upload a file", type="file", visible=False)
tmp_file = gr.File(LOOPING_TALKING_HEAD, visible=False)
# tmp_file_url = "/file=" + tmp_file.value['name']
htm_video = create_html_video(LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH)
video_html = gr.HTML(htm_video)
# my_aud_file = gr.File(label="Audio file", type="file", visible=True)
tmp_aud_file = gr.File("audios/tempfile.mp3", visible=False)
tmp_aud_file_url = "/file=" + tmp_aud_file.value['name']
htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>'
audio_html = gr.HTML(htm_audio)
with gr.Column(scale=6):
chatbot = gr.Chatbot(elem_id="chatbox")
with gr.Column(scale=3):
gr.Markdown("Enter your OpenAI API Key. You can get one [here](https://platform.openai.com/account/api-keys).", elem_id="label")
user_token = gr.Textbox(value='', placeholder="OpenAI API Key", type="password", show_label=False)
prompt_template = gr.Dropdown(label="Set a custom insruction for the chatbot:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Temperature", info="Higher = more creative/chaotic")
max_tokens = gr.Slider(minimum=100, maximum=4096, value=1000, step=1, label="Max tokens per response")
context_length = gr.Slider(minimum=1, maximum=10, value=2, step=1, label="Context length", info="Number of previous messages to send to the chatbot. Be careful with high values, it can blow up the token budget quickly.")
with gr.Row():
with gr.Column(min_width=TALKING_HEAD_WIDTH, visible=True):
type_select = gr.Dropdown(show_label=False, choices= ["TEXT", "IMAGE"],value="TEXT",interactive=True)
with gr.Column(scale=6):
input_message = gr.Textbox(show_label=False, placeholder="Enter text and press enter", visible=True).style(container=False)
with gr.Column(scale=3):
btn_submit = gr.Button("Submit")
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
with gr.Row():
btn_clear_conversation = gr.Button("🔃 Start New Conversation")
# with gr.Row():
# audio_comp = gr.Microphone(source="microphone", type="filepath", label="Just say it!",
# interactive=True, streaming=False)
# audio_comp.change(transcribe, inputs=[audio_comp, WHISPER_DETECT_LANG], outputs=[input_message])
# gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/anzorq/chatgpt-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
# <p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.chatgpt_api_demo_hf" alt="visitors"></p></center>''')
type_select.change(on_type_change,inputs=[type_select], outputs=[])
btn_submit.click(submit_message, [type_select,user_token, input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state, video_html, my_file, audio_html, tmp_aud_file])
input_message.submit(submit_message, [type_select,user_token, input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state, video_html, my_file, audio_html, tmp_aud_file])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
user_token.change(on_token_change, inputs=[user_token], outputs=[])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(
# auth=("admin", "IBTGeE3NrPsrViDI"),
height='800px')