Spaces:
Sleeping
Sleeping
import nltk | |
from nltk import word_tokenize | |
from nltk import pos_tag | |
import joblib | |
import numpy as np | |
from train import feature_vector, pos_tags | |
model = joblib.load('model.pkl') | |
scaler = joblib.load('scaler.pkl') | |
nltk.download('averaged_perceptron_tagger_eng') | |
nltk.download('punkt_tab') | |
def predict(sentence): | |
tokens = word_tokenize(sentence) | |
sent_pos_tags = pos_tag(tokens) | |
sent_features = [] | |
l = len(tokens) | |
for idx, word in enumerate(tokens): | |
current_tag = sent_pos_tags[idx][1] | |
current_idx = pos_tags.index(current_tag) if current_tag in pos_tags else -1 | |
prev_word = tokens[idx-1] if idx!=0 else "" | |
next_word = tokens[idx+1] if idx<l-1 else "" | |
word_features = feature_vector(word, (idx+1)/l, current_idx, prev_word, next_word) | |
sent_features.append(word_features) | |
scaled_features = scaler.transform(sent_features) | |
predictions = model.predict(scaled_features) | |
return tokens, predictions |