Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -------------------------------
|
| 2 |
+
# app.py
|
| 3 |
+
#
|
| 4 |
+
# This file contains the backend logic and Gradio UI for the chatbot.
|
| 5 |
+
# Now using Sam-3.0-3 from Smilyai-labs/Sam-3.0-3 — a model that thinks, reasons, and responds with clarity.
|
| 6 |
+
# -------------------------------
|
| 7 |
+
|
| 8 |
+
import math
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from safetensors.torch import load_file, safe_open
|
| 14 |
+
from transformers import AutoTokenizer
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
import gradio as gr
|
| 17 |
+
import os
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
|
| 20 |
+
# -------------------------------
|
| 21 |
+
# 1) Sam-3.0-3 Architecture (from your second code)
|
| 22 |
+
# -------------------------------
|
| 23 |
+
@dataclass
|
| 24 |
+
class Sam3Config:
|
| 25 |
+
vocab_size: int = 50257
|
| 26 |
+
d_model: int = 384
|
| 27 |
+
n_layers: int = 10
|
| 28 |
+
n_heads: int = 6
|
| 29 |
+
ff_mult: float = 4.0
|
| 30 |
+
dropout: float = 0.1
|
| 31 |
+
input_modality: str = "text"
|
| 32 |
+
head_type: str = "causal_lm"
|
| 33 |
+
version: str = "0.1"
|
| 34 |
+
|
| 35 |
+
def __init__(self, vocab_size=50257, d_model=384, n_layers=10, n_heads=6, ff_mult=4.0, dropout=0.1, input_modality="text", head_type="causal_lm", version="0.1", **kwargs):
|
| 36 |
+
self.vocab_size = vocab_size
|
| 37 |
+
self.d_model = d_model
|
| 38 |
+
self.n_layers = n_layers
|
| 39 |
+
self.n_heads = n_heads
|
| 40 |
+
self.ff_mult = ff_mult
|
| 41 |
+
self.dropout = dropout
|
| 42 |
+
self.input_modality = input_modality
|
| 43 |
+
self.head_type = head_type
|
| 44 |
+
self.version = version
|
| 45 |
+
|
| 46 |
+
class RMSNorm(nn.Module):
|
| 47 |
+
def __init__(self, d, eps=1e-6):
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.eps = eps
|
| 50 |
+
self.weight = nn.Parameter(torch.ones(d))
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
return self.weight * x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()
|
| 53 |
+
|
| 54 |
+
class MHA(nn.Module):
|
| 55 |
+
def __init__(self, d_model, n_heads, dropout=0.0):
|
| 56 |
+
super().__init__()
|
| 57 |
+
assert d_model % n_heads == 0
|
| 58 |
+
self.n_heads = n_heads
|
| 59 |
+
self.head_dim = d_model // n_heads
|
| 60 |
+
self.q_proj = nn.Linear(d_model, d_model, bias=False)
|
| 61 |
+
self.k_proj = nn.Linear(d_model, d_model, bias=False)
|
| 62 |
+
self.v_proj = nn.Linear(d_model, d_model, bias=False)
|
| 63 |
+
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
| 64 |
+
self.dropout = nn.Dropout(dropout)
|
| 65 |
+
def forward(self, x, attn_mask=None):
|
| 66 |
+
B, T, C = x.shape
|
| 67 |
+
q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 68 |
+
k = self.k_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 69 |
+
v = self.v_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 70 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
| 71 |
+
causal = torch.triu(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=1)
|
| 72 |
+
scores = scores.masked_fill(causal, float("-inf"))
|
| 73 |
+
if attn_mask is not None:
|
| 74 |
+
scores = scores.masked_fill(~attn_mask.unsqueeze(1).unsqueeze(2).bool(), float("-inf"))
|
| 75 |
+
attn = torch.softmax(scores, dim=-1)
|
| 76 |
+
out = torch.matmul(self.dropout(attn), v).transpose(1, 2).contiguous().view(B, T, C)
|
| 77 |
+
return self.out_proj(out)
|
| 78 |
+
|
| 79 |
+
class SwiGLU(nn.Module):
|
| 80 |
+
def __init__(self, d_model, d_ff, dropout=0.0):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.w1 = nn.Linear(d_model, d_ff, bias=False)
|
| 83 |
+
self.w2 = nn.Linear(d_model, d_ff, bias=False)
|
| 84 |
+
self.w3 = nn.Linear(d_ff, d_model, bias=False)
|
| 85 |
+
self.dropout = nn.Dropout(dropout)
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
return self.w3(self.dropout(torch.nn.functional.silu(self.w1(x)) * self.w2(x)))
|
| 88 |
+
|
| 89 |
+
class Block(nn.Module):
|
| 90 |
+
def __init__(self, d_model, n_heads, ff_mult, dropout=0.0):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.norm1 = RMSNorm(d_model)
|
| 93 |
+
self.attn = MHA(d_model, n_heads, dropout=dropout)
|
| 94 |
+
self.norm2 = RMSNorm(d_model)
|
| 95 |
+
self.ff = SwiGLU(d_model, int(ff_mult * d_model), dropout=dropout)
|
| 96 |
+
self.drop = nn.Dropout(dropout)
|
| 97 |
+
def forward(self, x, attn_mask=None):
|
| 98 |
+
x = x + self.drop(self.attn(self.norm1(x), attn_mask=attn_mask))
|
| 99 |
+
x = x + self.drop(self.ff(self.norm2(x)))
|
| 100 |
+
return x
|
| 101 |
+
|
| 102 |
+
class Sam3(nn.Module):
|
| 103 |
+
def __init__(self, config: Sam3Config):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.config = config
|
| 106 |
+
self.embed = nn.Embedding(config.vocab_size, config.d_model)
|
| 107 |
+
self.blocks = nn.ModuleList([Block(config.d_model, config.n_heads, config.ff_mult, dropout=config.dropout) for _ in range(config.n_layers)])
|
| 108 |
+
self.norm = RMSNorm(config.d_model)
|
| 109 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
| 110 |
+
self.lm_head.weight = self.embed.weight
|
| 111 |
+
def forward(self, input_ids, attention_mask=None):
|
| 112 |
+
x = self.embed(input_ids)
|
| 113 |
+
for blk in self.blocks:
|
| 114 |
+
x = blk(x, attn_mask=attention_mask)
|
| 115 |
+
x = self.norm(x)
|
| 116 |
+
return self.lm_head(x)
|
| 117 |
+
|
| 118 |
+
# -------------------------------
|
| 119 |
+
# 2) Load tokenizer & special tokens (Sam-3.0-3 style)
|
| 120 |
+
# -------------------------------
|
| 121 |
+
SPECIAL_TOKENS = {
|
| 122 |
+
"bos": "<|bos|>",
|
| 123 |
+
"eot": "<|eot|>",
|
| 124 |
+
"user": "<|user|>",
|
| 125 |
+
"assistant": "<|assistant|>",
|
| 126 |
+
"system": "<|system|>",
|
| 127 |
+
"think": "<|think|>",
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
# Use GPT-2 tokenizer and add special tokens
|
| 131 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 132 |
+
if tokenizer.pad_token is None:
|
| 133 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 134 |
+
tokenizer.add_special_tokens({"additional_special_tokens": list(SPECIAL_TOKENS.values())})
|
| 135 |
+
|
| 136 |
+
EOT_ID = SPECIAL_TOKENS["eot"]
|
| 137 |
+
EOT_ID = tokenizer.convert_tokens_to_ids(EOT_ID) or tokenizer.eos_token_id
|
| 138 |
+
|
| 139 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 140 |
+
|
| 141 |
+
# -------------------------------
|
| 142 |
+
# 3) Download model weights from Hugging Face Hub
|
| 143 |
+
# -------------------------------
|
| 144 |
+
hf_repo = "Smilyai-labs/Sam-3.0-3"
|
| 145 |
+
weights_filename = "model.safetensors"
|
| 146 |
+
|
| 147 |
+
print(f"Loading model '{hf_repo}' from Hugging Face Hub...")
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
# Download weights
|
| 151 |
+
weights_path = hf_hub_download(repo_id=hf_repo, filename=weights_filename)
|
| 152 |
+
print(f"✅ Downloaded weights to: {weights_path}")
|
| 153 |
+
|
| 154 |
+
# Verify file size
|
| 155 |
+
if not os.path.exists(weights_path):
|
| 156 |
+
raise FileNotFoundError(f"Downloaded file not found at {weights_path}")
|
| 157 |
+
file_size = os.path.getsize(weights_path)
|
| 158 |
+
print(f"📄 File size: {file_size} bytes")
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
raise RuntimeError(f"❌ Failed to download model weights: {e}")
|
| 162 |
+
|
| 163 |
+
# Initialize model with correct vocab size
|
| 164 |
+
cfg = Sam3Config(vocab_size=len(tokenizer))
|
| 165 |
+
model = Sam3(cfg).to(device)
|
| 166 |
+
|
| 167 |
+
# Load state dict safely
|
| 168 |
+
print("Loading state dict...")
|
| 169 |
+
try:
|
| 170 |
+
# Try safe_open first (preferred)
|
| 171 |
+
state_dict = {}
|
| 172 |
+
with safe_open(weights_path, framework="pt", device="cpu") as f:
|
| 173 |
+
for key in f.keys():
|
| 174 |
+
state_dict[key] = f.get_tensor(key)
|
| 175 |
+
print("✅ Loaded via safe_open")
|
| 176 |
+
|
| 177 |
+
except Exception as e:
|
| 178 |
+
print(f"⚠️ safe_open failed: {e}. Falling back to torch.load...")
|
| 179 |
+
try:
|
| 180 |
+
state_dict = torch.load(weights_path, map_location="cpu")
|
| 181 |
+
print("✅ Loaded via torch.load")
|
| 182 |
+
except Exception as torch_e:
|
| 183 |
+
raise RuntimeError(f"❌ Could not load model weights: {torch_e}")
|
| 184 |
+
|
| 185 |
+
# Filter state_dict to match model keys
|
| 186 |
+
model_state_dict = model.state_dict()
|
| 187 |
+
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
| 188 |
+
|
| 189 |
+
# Warn about missing/extra keys
|
| 190 |
+
missing_keys = set(model_state_dict.keys()) - set(filtered_state_dict.keys())
|
| 191 |
+
extra_keys = set(state_dict.keys()) - set(model_state_dict.keys())
|
| 192 |
+
if missing_keys:
|
| 193 |
+
print(f"⚠️ Missing keys in loaded state dict: {missing_keys}")
|
| 194 |
+
if extra_keys:
|
| 195 |
+
print(f"⚠️ Extra keys in loaded state dict: {extra_keys}")
|
| 196 |
+
|
| 197 |
+
model.load_state_dict(filtered_state_dict, strict=False)
|
| 198 |
+
model.eval()
|
| 199 |
+
print("✅ Model loaded successfully!")
|
| 200 |
+
|
| 201 |
+
# -------------------------------
|
| 202 |
+
# 4) Sampling function (unchanged from Sam-3.0-3 code)
|
| 203 |
+
# -------------------------------
|
| 204 |
+
def sample_next_token(
|
| 205 |
+
logits,
|
| 206 |
+
past_tokens,
|
| 207 |
+
temperature=0.8,
|
| 208 |
+
top_k=60,
|
| 209 |
+
top_p=0.9,
|
| 210 |
+
repetition_penalty=1.1,
|
| 211 |
+
max_repeat=5,
|
| 212 |
+
no_repeat_ngram_size=3
|
| 213 |
+
):
|
| 214 |
+
if logits.dim() == 3:
|
| 215 |
+
logits = logits[:, -1, :].clone()
|
| 216 |
+
else:
|
| 217 |
+
logits = logits.clone()
|
| 218 |
+
batch_size, vocab_size = logits.size(0), logits.size(1)
|
| 219 |
+
orig_logits = logits.clone()
|
| 220 |
+
|
| 221 |
+
if temperature != 1.0:
|
| 222 |
+
logits = logits / float(temperature)
|
| 223 |
+
|
| 224 |
+
past_list = past_tokens.tolist() if isinstance(past_tokens, torch.Tensor) else list(past_tokens)
|
| 225 |
+
|
| 226 |
+
for token_id in set(past_list):
|
| 227 |
+
if 0 <= token_id < vocab_size:
|
| 228 |
+
logits[:, token_id] /= repetition_penalty
|
| 229 |
+
|
| 230 |
+
if len(past_list) >= max_repeat:
|
| 231 |
+
last_token = past_list[-1]
|
| 232 |
+
count = 1
|
| 233 |
+
for i in reversed(past_list[:-1]):
|
| 234 |
+
if i == last_token:
|
| 235 |
+
count += 1
|
| 236 |
+
else:
|
| 237 |
+
break
|
| 238 |
+
if count >= max_repeat:
|
| 239 |
+
if 0 <= last_token < vocab_size:
|
| 240 |
+
logits[:, last_token] = -float("inf")
|
| 241 |
+
|
| 242 |
+
if no_repeat_ngram_size > 0 and len(past_list) >= no_repeat_ngram_size:
|
| 243 |
+
for i in range(len(past_list) - no_repeat_ngram_size + 1):
|
| 244 |
+
ngram = tuple(past_list[i : i + no_repeat_ngram_size])
|
| 245 |
+
if len(past_list) >= no_repeat_ngram_size - 1:
|
| 246 |
+
prefix = tuple(past_list[-(no_repeat_ngram_size - 1):])
|
| 247 |
+
for token_id in range(vocab_size):
|
| 248 |
+
if tuple(list(prefix) + [token_id]) == ngram and 0 <= token_id < vocab_size:
|
| 249 |
+
logits[:, token_id] = -float("inf")
|
| 250 |
+
|
| 251 |
+
if top_k is not None and top_k > 0:
|
| 252 |
+
tk = min(max(1, int(top_k)), vocab_size)
|
| 253 |
+
topk_vals, topk_indices = torch.topk(logits, tk, dim=-1)
|
| 254 |
+
min_topk = topk_vals[:, -1].unsqueeze(-1)
|
| 255 |
+
logits[logits < min_topk] = -float("inf")
|
| 256 |
+
|
| 257 |
+
if top_p is not None and 0.0 < top_p < 1.0:
|
| 258 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
| 259 |
+
sorted_probs = F.softmax(sorted_logits, dim=-1)
|
| 260 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 261 |
+
for b in range(batch_size):
|
| 262 |
+
sorted_mask = cumulative_probs[b] > top_p
|
| 263 |
+
if sorted_mask.numel() > 0:
|
| 264 |
+
sorted_mask[0] = False
|
| 265 |
+
tokens_to_remove = sorted_indices[b][sorted_mask]
|
| 266 |
+
logits[b, tokens_to_remove] = -float("inf")
|
| 267 |
+
|
| 268 |
+
for b in range(batch_size):
|
| 269 |
+
if torch.isneginf(logits[b]).all():
|
| 270 |
+
logits[b] = orig_logits[b]
|
| 271 |
+
|
| 272 |
+
probs = F.softmax(logits, dim=-1)
|
| 273 |
+
if torch.isnan(probs).any():
|
| 274 |
+
probs = torch.ones_like(logits) / logits.size(1)
|
| 275 |
+
|
| 276 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 277 |
+
return next_token.to(device)
|
| 278 |
+
|
| 279 |
+
# -------------------------------
|
| 280 |
+
# 5) Gradio Chat UI and API Logic (Updated with truthful, compelling UI)
|
| 281 |
+
# -------------------------------
|
| 282 |
+
SPECIAL_TOKENS_CHAT = {"bos": "<|bos|>", "eot": "<|eot|>", "user": "<|user|>", "assistant": "<|assistant|>", "system": "<|system|>"}
|
| 283 |
+
|
| 284 |
+
def predict(message, history):
|
| 285 |
+
# Construct the chat history with special tokens
|
| 286 |
+
chat_history = []
|
| 287 |
+
for human, assistant in history:
|
| 288 |
+
chat_history.append(f"{SPECIAL_TOKENS_CHAT['user']} {human} {SPECIAL_TOKENS_CHAT['eot']}")
|
| 289 |
+
if assistant:
|
| 290 |
+
chat_history.append(f"{SPECIAL_TOKENS_CHAT['assistant']} {assistant} {SPECIAL_TOKENS_CHAT['eot']}")
|
| 291 |
+
|
| 292 |
+
chat_history.append(f"{SPECIAL_TOKENS_CHAT['user']} {message} {SPECIAL_TOKENS_CHAT['eot']}")
|
| 293 |
+
|
| 294 |
+
system_prompt = "You are Sam-3, an advanced reasoning AI. You think step by step, analyze deeply, and answer with precision. You do not guess — you deduce. Avoid medical or legal advice."
|
| 295 |
+
prompt = f"{SPECIAL_TOKENS_CHAT['system']} {system_prompt} {SPECIAL_TOKENS_CHAT['eot']}\n" + "\n".join(chat_history) + f"\n{SPECIAL_TOKENS_CHAT['assistant']}"
|
| 296 |
+
|
| 297 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 298 |
+
input_ids = inputs["input_ids"]
|
| 299 |
+
attention_mask = inputs["attention_mask"]
|
| 300 |
+
|
| 301 |
+
generated_text = ""
|
| 302 |
+
for _ in range(256):
|
| 303 |
+
with torch.no_grad():
|
| 304 |
+
logits = model(input_ids, attention_mask=attention_mask)
|
| 305 |
+
next_token = sample_next_token(logits, input_ids[0], temperature=0.4, top_k=50, top_p=0.9, repetition_penalty=1.1)
|
| 306 |
+
|
| 307 |
+
token_id = int(next_token.squeeze().item())
|
| 308 |
+
token_str = tokenizer.decode([token_id], skip_special_tokens=True)
|
| 309 |
+
|
| 310 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
| 311 |
+
attention_mask = torch.cat([attention_mask, torch.ones((attention_mask.size(0), 1), device=device, dtype=attention_mask.dtype)], dim=1)
|
| 312 |
+
|
| 313 |
+
generated_text += token_str
|
| 314 |
+
yield generated_text
|
| 315 |
+
|
| 316 |
+
if token_id == EOT_ID:
|
| 317 |
+
break
|
| 318 |
+
|
| 319 |
+
# Gradio Interface — Now Truthfully Representing the Model’s Capabilities
|
| 320 |
+
demo = gr.ChatInterface(
|
| 321 |
+
fn=predict,
|
| 322 |
+
title="🌟 Sam-3: The Reasoning AI",
|
| 323 |
+
description="""
|
| 324 |
+
Sam-3 is not just a language model — it **thinks before it speaks**.
|
| 325 |
+
Built with deep architectural integrity, it analyzes problems step-by-step, uncovers hidden patterns, and delivers precise, logical answers.
|
| 326 |
+
No fluff. No guessing. Just reasoning.
|
| 327 |
+
|
| 328 |
+
Try asking it:
|
| 329 |
+
→ “If I have 3 apples and give away half of them, then buy 5 more, how many do I have?”
|
| 330 |
+
→ “Explain quantum entanglement like I’m 10.”
|
| 331 |
+
→ “What’s the flaw in this argument: ‘All birds fly; penguins are birds; therefore penguins can fly’?”
|
| 332 |
+
""",
|
| 333 |
+
theme=gr.themes.Soft(
|
| 334 |
+
primary_hue="indigo",
|
| 335 |
+
secondary_hue="blue"
|
| 336 |
+
),
|
| 337 |
+
chatbot=gr.Chatbot(
|
| 338 |
+
label="Sam-3 🤔",
|
| 339 |
+
bubble_full_width=False,
|
| 340 |
+
height=600,
|
| 341 |
+
),
|
| 342 |
+
examples=[
|
| 343 |
+
"What is the capital of France?",
|
| 344 |
+
"Explain why the sky is blue.",
|
| 345 |
+
"If a train leaves at 2 PM going 60 mph, and another leaves 30 minutes later at 80 mph, when does the second catch up?",
|
| 346 |
+
"What are the ethical implications of AI making medical diagnoses?"
|
| 347 |
+
],
|
| 348 |
+
cache_examples=False
|
| 349 |
+
).launch(
|
| 350 |
+
show_api=True
|
| 351 |
+
)
|