SmilingWolf's picture
Danbooru2022 Explorer v1.0
ff17aaa
raw
history blame
6.8 kB
import argparse
import functools
import json
from pathlib import Path
import faiss
import gradio as gr
import numpy as np
import PIL.Image
import requests
import tensorflow as tf
from huggingface_hub import hf_hub_download
from Utils import dbimutils
TITLE = "## Danbooru Explorer"
DESCRIPTION = """
Image similarity-based retrieval tool using:
- [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2) as feature extractor
- [Faiss](https://github.com/facebookresearch/faiss) and [autofaiss](https://github.com/criteo/autofaiss) for indexing
"""
CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV_MODEL_REVISION = "v2.0"
CONV_FEXT_LAYER = "predictions_norm"
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def download_model(model_repo, model_revision):
model_files = [
{"filename": "saved_model.pb", "subfolder": ""},
{"filename": "keras_metadata.pb", "subfolder": ""},
{"filename": "variables.index", "subfolder": "variables"},
{"filename": "variables.data-00000-of-00001", "subfolder": "variables"},
]
model_file_paths = []
for elem in model_files:
model_file_paths.append(
Path(hf_hub_download(model_repo, revision=model_revision, **elem))
)
model_path = model_file_paths[0].parents[0]
return model_path
def load_model(model_repo, model_revision, feature_extraction_layer):
model_path = download_model(model_repo, model_revision)
full_model = tf.keras.models.load_model(model_path)
model = tf.keras.models.Model(
full_model.inputs, full_model.get_layer(feature_extraction_layer).output
)
return model
def danbooru_id_to_url(image_id, selected_ratings, api_username="", api_key=""):
headers = {"User-Agent": "image_similarity_tool"}
ratings_to_letters = {
"General": "g",
"Sensitive": "s",
"Questionable": "q",
"Explicit": "e",
}
acceptable_ratings = [ratings_to_letters[x] for x in selected_ratings]
image_url = f"https://danbooru.donmai.us/posts/{image_id}.json"
if api_username != "" and api_key != "":
image_url = f"{image_url}?api_key={api_key}&login={api_username}"
r = requests.get(image_url, headers=headers)
if r.status_code != 200:
return None
content = json.loads(r.text)
image_url = content["large_file_url"] if "large_file_url" in content else None
image_url = image_url if content["rating"] in acceptable_ratings else None
return image_url
class SimilaritySearcher:
def __init__(self, model, images_ids):
self.knn_index = None
self.knn_metric = None
self.model = model
self.images_ids = images_ids
def change_index(self, knn_metric):
if knn_metric == self.knn_metric:
return
if knn_metric == "ip":
self.knn_index = faiss.read_index("index/ip_knn.index")
config = json.loads(open("index/ip_infos.json").read())["index_param"]
elif knn_metric == "cosine":
self.knn_index = faiss.read_index("index/cosine_knn.index")
config = json.loads(open("index/cosine_infos.json").read())["index_param"]
faiss.ParameterSpace().set_index_parameters(self.knn_index, config)
self.knn_metric = knn_metric
def predict(
self, image, selected_ratings, knn_metric, api_username, api_key, n_neighbours
):
_, height, width, _ = self.model.inputs[0].shape
self.change_index(knn_metric)
# Alpha to white
image = image.convert("RGBA")
new_image = PIL.Image.new("RGBA", image.size, "WHITE")
new_image.paste(image, mask=image)
image = new_image.convert("RGB")
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = dbimutils.make_square(image, height)
image = dbimutils.smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
target = self.model(image).numpy()
if self.knn_metric == "cosine":
faiss.normalize_L2(target)
dists, indexes = self.knn_index.search(target, k=n_neighbours)
neighbours_ids = self.images_ids[indexes][0]
neighbours_ids = [int(x) for x in neighbours_ids]
captions = []
for image_id, dist in zip(neighbours_ids, dists[0]):
captions.append(f"{image_id}/{dist:.2f}")
image_urls = []
for image_id in neighbours_ids:
current_url = danbooru_id_to_url(
image_id, selected_ratings, api_username, api_key
)
if current_url is not None:
image_urls.append(current_url)
return list(zip(image_urls, captions))
def main():
args = parse_args()
model = load_model(CONV_MODEL_REPO, CONV_MODEL_REVISION, CONV_FEXT_LAYER)
images_ids = np.load("index/cosine_ids.npy")
searcher = SimilaritySearcher(model=model, images_ids=images_ids)
with gr.Blocks() as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
input = gr.Image(type="pil", label="Input")
with gr.Column():
with gr.Row():
api_username = gr.Textbox(label="Danbooru API Username")
api_key = gr.Textbox(label="Danbooru API Key")
with gr.Row():
selected_ratings = gr.CheckboxGroup(
choices=["General", "Sensitive", "Questionable", "Explicit"],
value=["General", "Sensitive"],
label="Ratings",
)
selected_metric = gr.Radio(
choices=["cosine"],
value="cosine",
label="Metric selection",
visible=False,
)
n_neighbours = gr.Slider(
minimum=1, maximum=20, value=5, step=1, label="# of images"
)
find_btn = gr.Button("Find similar images")
similar_images = gr.Gallery(label="Similar images")
similar_images.style(grid=5)
find_btn.click(
fn=searcher.predict,
inputs=[
input,
selected_ratings,
selected_metric,
api_username,
api_key,
n_neighbours,
],
outputs=[similar_images],
)
demo.queue()
demo.launch(share=args.share)
if __name__ == "__main__":
main()