cmahima commited on
Commit
3cbdbde
·
verified ·
1 Parent(s): a7ce033

Upload 10 files

Browse files
ip_adapter/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull
2
+
3
+ __all__ = [
4
+ "IPAdapter",
5
+ "IPAdapterPlus",
6
+ "IPAdapterPlusXL",
7
+ "IPAdapterXL",
8
+ "IPAdapterFull",
9
+ ]
ip_adapter/attention_processor.py ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+
7
+ class AttnProcessor(nn.Module):
8
+ r"""
9
+ Default processor for performing attention-related computations.
10
+ """
11
+
12
+ def __init__(
13
+ self,
14
+ hidden_size=None,
15
+ cross_attention_dim=None,
16
+ ):
17
+ super().__init__()
18
+
19
+ def __call__(
20
+ self,
21
+ attn,
22
+ hidden_states,
23
+ encoder_hidden_states=None,
24
+ attention_mask=None,
25
+ temb=None,
26
+ ):
27
+ residual = hidden_states
28
+
29
+ if attn.spatial_norm is not None:
30
+ hidden_states = attn.spatial_norm(hidden_states, temb)
31
+
32
+ input_ndim = hidden_states.ndim
33
+
34
+ if input_ndim == 4:
35
+ batch_size, channel, height, width = hidden_states.shape
36
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
37
+
38
+ batch_size, sequence_length, _ = (
39
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
40
+ )
41
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
42
+
43
+ if attn.group_norm is not None:
44
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
45
+
46
+ query = attn.to_q(hidden_states)
47
+
48
+ if encoder_hidden_states is None:
49
+ encoder_hidden_states = hidden_states
50
+ elif attn.norm_cross:
51
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
52
+
53
+ key = attn.to_k(encoder_hidden_states)
54
+ value = attn.to_v(encoder_hidden_states)
55
+
56
+ query = attn.head_to_batch_dim(query)
57
+ key = attn.head_to_batch_dim(key)
58
+ value = attn.head_to_batch_dim(value)
59
+
60
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
61
+ hidden_states = torch.bmm(attention_probs, value)
62
+ hidden_states = attn.batch_to_head_dim(hidden_states)
63
+
64
+ # linear proj
65
+ hidden_states = attn.to_out[0](hidden_states)
66
+ # dropout
67
+ hidden_states = attn.to_out[1](hidden_states)
68
+
69
+ if input_ndim == 4:
70
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
71
+
72
+ if attn.residual_connection:
73
+ hidden_states = hidden_states + residual
74
+
75
+ hidden_states = hidden_states / attn.rescale_output_factor
76
+
77
+ return hidden_states
78
+
79
+
80
+ class IPAttnProcessor(nn.Module):
81
+ r"""
82
+ Attention processor for IP-Adapater.
83
+ Args:
84
+ hidden_size (`int`):
85
+ The hidden size of the attention layer.
86
+ cross_attention_dim (`int`):
87
+ The number of channels in the `encoder_hidden_states`.
88
+ scale (`float`, defaults to 1.0):
89
+ the weight scale of image prompt.
90
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
91
+ The context length of the image features.
92
+ """
93
+
94
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
95
+ super().__init__()
96
+
97
+ self.hidden_size = hidden_size
98
+ self.cross_attention_dim = cross_attention_dim
99
+ self.scale = scale
100
+ self.num_tokens = num_tokens
101
+
102
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
103
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
104
+
105
+ def __call__(
106
+ self,
107
+ attn,
108
+ hidden_states,
109
+ encoder_hidden_states=None,
110
+ attention_mask=None,
111
+ temb=None,
112
+ ):
113
+ residual = hidden_states
114
+
115
+ if attn.spatial_norm is not None:
116
+ hidden_states = attn.spatial_norm(hidden_states, temb)
117
+
118
+ input_ndim = hidden_states.ndim
119
+
120
+ if input_ndim == 4:
121
+ batch_size, channel, height, width = hidden_states.shape
122
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
123
+
124
+ batch_size, sequence_length, _ = (
125
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
126
+ )
127
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
128
+
129
+ if attn.group_norm is not None:
130
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
131
+
132
+ query = attn.to_q(hidden_states)
133
+
134
+ if encoder_hidden_states is None:
135
+ encoder_hidden_states = hidden_states
136
+ else:
137
+ # get encoder_hidden_states, ip_hidden_states
138
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
139
+ encoder_hidden_states, ip_hidden_states = (
140
+ encoder_hidden_states[:, :end_pos, :],
141
+ encoder_hidden_states[:, end_pos:, :],
142
+ )
143
+ if attn.norm_cross:
144
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
145
+
146
+ key = attn.to_k(encoder_hidden_states)
147
+ value = attn.to_v(encoder_hidden_states)
148
+
149
+ query = attn.head_to_batch_dim(query)
150
+ key = attn.head_to_batch_dim(key)
151
+ value = attn.head_to_batch_dim(value)
152
+
153
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
154
+ hidden_states = torch.bmm(attention_probs, value)
155
+ hidden_states = attn.batch_to_head_dim(hidden_states)
156
+
157
+ # for ip-adapter
158
+ ip_key = self.to_k_ip(ip_hidden_states)
159
+ ip_value = self.to_v_ip(ip_hidden_states)
160
+
161
+ ip_key = attn.head_to_batch_dim(ip_key)
162
+ ip_value = attn.head_to_batch_dim(ip_value)
163
+
164
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
165
+ self.attn_map = ip_attention_probs
166
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
167
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
168
+
169
+ hidden_states = hidden_states + self.scale * ip_hidden_states
170
+
171
+ # linear proj
172
+ hidden_states = attn.to_out[0](hidden_states)
173
+ # dropout
174
+ hidden_states = attn.to_out[1](hidden_states)
175
+
176
+ if input_ndim == 4:
177
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
178
+
179
+ if attn.residual_connection:
180
+ hidden_states = hidden_states + residual
181
+
182
+ hidden_states = hidden_states / attn.rescale_output_factor
183
+
184
+ return hidden_states
185
+
186
+
187
+ class AttnProcessor2_0(torch.nn.Module):
188
+ r"""
189
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
190
+ """
191
+
192
+ def __init__(
193
+ self,
194
+ hidden_size=None,
195
+ cross_attention_dim=None,
196
+ ):
197
+ super().__init__()
198
+ if not hasattr(F, "scaled_dot_product_attention"):
199
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
200
+
201
+ def __call__(
202
+ self,
203
+ attn,
204
+ hidden_states,
205
+ encoder_hidden_states=None,
206
+ attention_mask=None,
207
+ temb=None,
208
+ ):
209
+ residual = hidden_states
210
+
211
+ if attn.spatial_norm is not None:
212
+ hidden_states = attn.spatial_norm(hidden_states, temb)
213
+
214
+ input_ndim = hidden_states.ndim
215
+
216
+ if input_ndim == 4:
217
+ batch_size, channel, height, width = hidden_states.shape
218
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
219
+
220
+ batch_size, sequence_length, _ = (
221
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
222
+ )
223
+
224
+ if attention_mask is not None:
225
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
226
+ # scaled_dot_product_attention expects attention_mask shape to be
227
+ # (batch, heads, source_length, target_length)
228
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
229
+
230
+ if attn.group_norm is not None:
231
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
232
+
233
+ query = attn.to_q(hidden_states)
234
+
235
+ if encoder_hidden_states is None:
236
+ encoder_hidden_states = hidden_states
237
+ elif attn.norm_cross:
238
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
239
+
240
+ key = attn.to_k(encoder_hidden_states)
241
+ value = attn.to_v(encoder_hidden_states)
242
+
243
+ inner_dim = key.shape[-1]
244
+ head_dim = inner_dim // attn.heads
245
+
246
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
247
+
248
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
249
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
250
+
251
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
252
+ # TODO: add support for attn.scale when we move to Torch 2.1
253
+ hidden_states = F.scaled_dot_product_attention(
254
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
255
+ )
256
+
257
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
258
+ hidden_states = hidden_states.to(query.dtype)
259
+
260
+ # linear proj
261
+ hidden_states = attn.to_out[0](hidden_states)
262
+ # dropout
263
+ hidden_states = attn.to_out[1](hidden_states)
264
+
265
+ if input_ndim == 4:
266
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
267
+
268
+ if attn.residual_connection:
269
+ hidden_states = hidden_states + residual
270
+
271
+ hidden_states = hidden_states / attn.rescale_output_factor
272
+
273
+ return hidden_states
274
+
275
+
276
+ class IPAttnProcessor2_0(torch.nn.Module):
277
+ r"""
278
+ Attention processor for IP-Adapater for PyTorch 2.0.
279
+ Args:
280
+ hidden_size (`int`):
281
+ The hidden size of the attention layer.
282
+ cross_attention_dim (`int`):
283
+ The number of channels in the `encoder_hidden_states`.
284
+ scale (`float`, defaults to 1.0):
285
+ the weight scale of image prompt.
286
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
287
+ The context length of the image features.
288
+ """
289
+
290
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
291
+ super().__init__()
292
+
293
+ if not hasattr(F, "scaled_dot_product_attention"):
294
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
295
+
296
+ self.hidden_size = hidden_size
297
+ self.cross_attention_dim = cross_attention_dim
298
+ self.scale = scale
299
+ self.num_tokens = num_tokens
300
+
301
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
302
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
303
+
304
+ def __call__(
305
+ self,
306
+ attn,
307
+ hidden_states,
308
+ encoder_hidden_states=None,
309
+ attention_mask=None,
310
+ temb=None,
311
+ ):
312
+ residual = hidden_states
313
+
314
+ if attn.spatial_norm is not None:
315
+ hidden_states = attn.spatial_norm(hidden_states, temb)
316
+
317
+ input_ndim = hidden_states.ndim
318
+
319
+ if input_ndim == 4:
320
+ batch_size, channel, height, width = hidden_states.shape
321
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
322
+
323
+ batch_size, sequence_length, _ = (
324
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
325
+ )
326
+
327
+ if attention_mask is not None:
328
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
329
+ # scaled_dot_product_attention expects attention_mask shape to be
330
+ # (batch, heads, source_length, target_length)
331
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
332
+
333
+ if attn.group_norm is not None:
334
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
335
+
336
+ query = attn.to_q(hidden_states)
337
+
338
+ if encoder_hidden_states is None:
339
+ encoder_hidden_states = hidden_states
340
+ else:
341
+ # get encoder_hidden_states, ip_hidden_states
342
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
343
+ encoder_hidden_states, ip_hidden_states = (
344
+ encoder_hidden_states[:, :end_pos, :],
345
+ encoder_hidden_states[:, end_pos:, :],
346
+ )
347
+ if attn.norm_cross:
348
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
349
+
350
+ key = attn.to_k(encoder_hidden_states)
351
+ value = attn.to_v(encoder_hidden_states)
352
+
353
+ inner_dim = key.shape[-1]
354
+ head_dim = inner_dim // attn.heads
355
+
356
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
357
+
358
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
359
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
360
+
361
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
362
+ # TODO: add support for attn.scale when we move to Torch 2.1
363
+ hidden_states = F.scaled_dot_product_attention(
364
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
365
+ )
366
+
367
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
368
+ hidden_states = hidden_states.to(query.dtype)
369
+
370
+ # for ip-adapter
371
+ ip_key = self.to_k_ip(ip_hidden_states)
372
+ ip_value = self.to_v_ip(ip_hidden_states)
373
+
374
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
375
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
376
+
377
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
378
+ # TODO: add support for attn.scale when we move to Torch 2.1
379
+ ip_hidden_states = F.scaled_dot_product_attention(
380
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
381
+ )
382
+ with torch.no_grad():
383
+ self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
384
+ #print(self.attn_map.shape)
385
+
386
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
387
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
388
+
389
+ hidden_states = hidden_states + self.scale * ip_hidden_states
390
+
391
+ # linear proj
392
+ hidden_states = attn.to_out[0](hidden_states)
393
+ # dropout
394
+ hidden_states = attn.to_out[1](hidden_states)
395
+
396
+ if input_ndim == 4:
397
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
398
+
399
+ if attn.residual_connection:
400
+ hidden_states = hidden_states + residual
401
+
402
+ hidden_states = hidden_states / attn.rescale_output_factor
403
+
404
+ return hidden_states
405
+
406
+
407
+ ## for controlnet
408
+ class CNAttnProcessor:
409
+ r"""
410
+ Default processor for performing attention-related computations.
411
+ """
412
+
413
+ def __init__(self, num_tokens=4):
414
+ self.num_tokens = num_tokens
415
+
416
+ def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
417
+ residual = hidden_states
418
+
419
+ if attn.spatial_norm is not None:
420
+ hidden_states = attn.spatial_norm(hidden_states, temb)
421
+
422
+ input_ndim = hidden_states.ndim
423
+
424
+ if input_ndim == 4:
425
+ batch_size, channel, height, width = hidden_states.shape
426
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
427
+
428
+ batch_size, sequence_length, _ = (
429
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
430
+ )
431
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
432
+
433
+ if attn.group_norm is not None:
434
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
435
+
436
+ query = attn.to_q(hidden_states)
437
+
438
+ if encoder_hidden_states is None:
439
+ encoder_hidden_states = hidden_states
440
+ else:
441
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
442
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
443
+ if attn.norm_cross:
444
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
445
+
446
+ key = attn.to_k(encoder_hidden_states)
447
+ value = attn.to_v(encoder_hidden_states)
448
+
449
+ query = attn.head_to_batch_dim(query)
450
+ key = attn.head_to_batch_dim(key)
451
+ value = attn.head_to_batch_dim(value)
452
+
453
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
454
+ hidden_states = torch.bmm(attention_probs, value)
455
+ hidden_states = attn.batch_to_head_dim(hidden_states)
456
+
457
+ # linear proj
458
+ hidden_states = attn.to_out[0](hidden_states)
459
+ # dropout
460
+ hidden_states = attn.to_out[1](hidden_states)
461
+
462
+ if input_ndim == 4:
463
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
464
+
465
+ if attn.residual_connection:
466
+ hidden_states = hidden_states + residual
467
+
468
+ hidden_states = hidden_states / attn.rescale_output_factor
469
+
470
+ return hidden_states
471
+
472
+
473
+ class CNAttnProcessor2_0:
474
+ r"""
475
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
476
+ """
477
+
478
+ def __init__(self, num_tokens=4):
479
+ if not hasattr(F, "scaled_dot_product_attention"):
480
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
481
+ self.num_tokens = num_tokens
482
+
483
+ def __call__(
484
+ self,
485
+ attn,
486
+ hidden_states,
487
+ encoder_hidden_states=None,
488
+ attention_mask=None,
489
+ temb=None,
490
+ ):
491
+ residual = hidden_states
492
+
493
+ if attn.spatial_norm is not None:
494
+ hidden_states = attn.spatial_norm(hidden_states, temb)
495
+
496
+ input_ndim = hidden_states.ndim
497
+
498
+ if input_ndim == 4:
499
+ batch_size, channel, height, width = hidden_states.shape
500
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
501
+
502
+ batch_size, sequence_length, _ = (
503
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
504
+ )
505
+
506
+ if attention_mask is not None:
507
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
508
+ # scaled_dot_product_attention expects attention_mask shape to be
509
+ # (batch, heads, source_length, target_length)
510
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
511
+
512
+ if attn.group_norm is not None:
513
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
514
+
515
+ query = attn.to_q(hidden_states)
516
+
517
+ if encoder_hidden_states is None:
518
+ encoder_hidden_states = hidden_states
519
+ else:
520
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
521
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
522
+ if attn.norm_cross:
523
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
524
+
525
+ key = attn.to_k(encoder_hidden_states)
526
+ value = attn.to_v(encoder_hidden_states)
527
+
528
+ inner_dim = key.shape[-1]
529
+ head_dim = inner_dim // attn.heads
530
+
531
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
532
+
533
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
534
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
535
+
536
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
537
+ # TODO: add support for attn.scale when we move to Torch 2.1
538
+ hidden_states = F.scaled_dot_product_attention(
539
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
540
+ )
541
+
542
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
543
+ hidden_states = hidden_states.to(query.dtype)
544
+
545
+ # linear proj
546
+ hidden_states = attn.to_out[0](hidden_states)
547
+ # dropout
548
+ hidden_states = attn.to_out[1](hidden_states)
549
+
550
+ if input_ndim == 4:
551
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
552
+
553
+ if attn.residual_connection:
554
+ hidden_states = hidden_states + residual
555
+
556
+ hidden_states = hidden_states / attn.rescale_output_factor
557
+
558
+ return hidden_states
ip_adapter/attention_processor_faceid.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from diffusers.models.lora import LoRALinearLayer
7
+
8
+
9
+ class LoRAAttnProcessor(nn.Module):
10
+ r"""
11
+ Default processor for performing attention-related computations.
12
+ """
13
+
14
+ def __init__(
15
+ self,
16
+ hidden_size=None,
17
+ cross_attention_dim=None,
18
+ rank=4,
19
+ network_alpha=None,
20
+ lora_scale=1.0,
21
+ ):
22
+ super().__init__()
23
+
24
+ self.rank = rank
25
+ self.lora_scale = lora_scale
26
+
27
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
28
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
29
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
30
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
31
+
32
+ def __call__(
33
+ self,
34
+ attn,
35
+ hidden_states,
36
+ encoder_hidden_states=None,
37
+ attention_mask=None,
38
+ temb=None,
39
+ ):
40
+ residual = hidden_states
41
+
42
+ if attn.spatial_norm is not None:
43
+ hidden_states = attn.spatial_norm(hidden_states, temb)
44
+
45
+ input_ndim = hidden_states.ndim
46
+
47
+ if input_ndim == 4:
48
+ batch_size, channel, height, width = hidden_states.shape
49
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
50
+
51
+ batch_size, sequence_length, _ = (
52
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
53
+ )
54
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
55
+
56
+ if attn.group_norm is not None:
57
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
58
+
59
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
60
+
61
+ if encoder_hidden_states is None:
62
+ encoder_hidden_states = hidden_states
63
+ elif attn.norm_cross:
64
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
65
+
66
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
67
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
68
+
69
+ query = attn.head_to_batch_dim(query)
70
+ key = attn.head_to_batch_dim(key)
71
+ value = attn.head_to_batch_dim(value)
72
+
73
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
74
+ hidden_states = torch.bmm(attention_probs, value)
75
+ hidden_states = attn.batch_to_head_dim(hidden_states)
76
+
77
+ # linear proj
78
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
79
+ # dropout
80
+ hidden_states = attn.to_out[1](hidden_states)
81
+
82
+ if input_ndim == 4:
83
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
84
+
85
+ if attn.residual_connection:
86
+ hidden_states = hidden_states + residual
87
+
88
+ hidden_states = hidden_states / attn.rescale_output_factor
89
+
90
+ return hidden_states
91
+
92
+
93
+ class LoRAIPAttnProcessor(nn.Module):
94
+ r"""
95
+ Attention processor for IP-Adapater.
96
+ Args:
97
+ hidden_size (`int`):
98
+ The hidden size of the attention layer.
99
+ cross_attention_dim (`int`):
100
+ The number of channels in the `encoder_hidden_states`.
101
+ scale (`float`, defaults to 1.0):
102
+ the weight scale of image prompt.
103
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
104
+ The context length of the image features.
105
+ """
106
+
107
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
108
+ super().__init__()
109
+
110
+ self.rank = rank
111
+ self.lora_scale = lora_scale
112
+
113
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
114
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
115
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
116
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
117
+
118
+ self.hidden_size = hidden_size
119
+ self.cross_attention_dim = cross_attention_dim
120
+ self.scale = scale
121
+ self.num_tokens = num_tokens
122
+
123
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
124
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
125
+
126
+ def __call__(
127
+ self,
128
+ attn,
129
+ hidden_states,
130
+ encoder_hidden_states=None,
131
+ attention_mask=None,
132
+ temb=None,
133
+ ):
134
+ residual = hidden_states
135
+
136
+ if attn.spatial_norm is not None:
137
+ hidden_states = attn.spatial_norm(hidden_states, temb)
138
+
139
+ input_ndim = hidden_states.ndim
140
+
141
+ if input_ndim == 4:
142
+ batch_size, channel, height, width = hidden_states.shape
143
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
144
+
145
+ batch_size, sequence_length, _ = (
146
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
147
+ )
148
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
149
+
150
+ if attn.group_norm is not None:
151
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
152
+
153
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
154
+
155
+ if encoder_hidden_states is None:
156
+ encoder_hidden_states = hidden_states
157
+ else:
158
+ # get encoder_hidden_states, ip_hidden_states
159
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
160
+ encoder_hidden_states, ip_hidden_states = (
161
+ encoder_hidden_states[:, :end_pos, :],
162
+ encoder_hidden_states[:, end_pos:, :],
163
+ )
164
+ if attn.norm_cross:
165
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
166
+
167
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
168
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
169
+
170
+ query = attn.head_to_batch_dim(query)
171
+ key = attn.head_to_batch_dim(key)
172
+ value = attn.head_to_batch_dim(value)
173
+
174
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
175
+ hidden_states = torch.bmm(attention_probs, value)
176
+ hidden_states = attn.batch_to_head_dim(hidden_states)
177
+
178
+ # for ip-adapter
179
+ ip_key = self.to_k_ip(ip_hidden_states)
180
+ ip_value = self.to_v_ip(ip_hidden_states)
181
+
182
+ ip_key = attn.head_to_batch_dim(ip_key)
183
+ ip_value = attn.head_to_batch_dim(ip_value)
184
+
185
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
186
+ self.attn_map = ip_attention_probs
187
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
188
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
189
+
190
+ hidden_states = hidden_states + self.scale * ip_hidden_states
191
+
192
+ # linear proj
193
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
194
+ # dropout
195
+ hidden_states = attn.to_out[1](hidden_states)
196
+
197
+ if input_ndim == 4:
198
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
199
+
200
+ if attn.residual_connection:
201
+ hidden_states = hidden_states + residual
202
+
203
+ hidden_states = hidden_states / attn.rescale_output_factor
204
+
205
+ return hidden_states
206
+
207
+
208
+ class LoRAAttnProcessor2_0(nn.Module):
209
+
210
+ r"""
211
+ Default processor for performing attention-related computations.
212
+ """
213
+
214
+ def __init__(
215
+ self,
216
+ hidden_size=None,
217
+ cross_attention_dim=None,
218
+ rank=4,
219
+ network_alpha=None,
220
+ lora_scale=1.0,
221
+ ):
222
+ super().__init__()
223
+
224
+ self.rank = rank
225
+ self.lora_scale = lora_scale
226
+
227
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
228
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
229
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
230
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
231
+
232
+ def __call__(
233
+ self,
234
+ attn,
235
+ hidden_states,
236
+ encoder_hidden_states=None,
237
+ attention_mask=None,
238
+ temb=None,
239
+ ):
240
+ residual = hidden_states
241
+
242
+ if attn.spatial_norm is not None:
243
+ hidden_states = attn.spatial_norm(hidden_states, temb)
244
+
245
+ input_ndim = hidden_states.ndim
246
+
247
+ if input_ndim == 4:
248
+ batch_size, channel, height, width = hidden_states.shape
249
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
250
+
251
+ batch_size, sequence_length, _ = (
252
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
253
+ )
254
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
255
+
256
+ if attn.group_norm is not None:
257
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
258
+
259
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
260
+
261
+ if encoder_hidden_states is None:
262
+ encoder_hidden_states = hidden_states
263
+ elif attn.norm_cross:
264
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
265
+
266
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
267
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
268
+
269
+ inner_dim = key.shape[-1]
270
+ head_dim = inner_dim // attn.heads
271
+
272
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
273
+
274
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
275
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
276
+
277
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
278
+ # TODO: add support for attn.scale when we move to Torch 2.1
279
+ hidden_states = F.scaled_dot_product_attention(
280
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
281
+ )
282
+
283
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
284
+ hidden_states = hidden_states.to(query.dtype)
285
+
286
+ # linear proj
287
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
288
+ # dropout
289
+ hidden_states = attn.to_out[1](hidden_states)
290
+
291
+ if input_ndim == 4:
292
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
293
+
294
+ if attn.residual_connection:
295
+ hidden_states = hidden_states + residual
296
+
297
+ hidden_states = hidden_states / attn.rescale_output_factor
298
+
299
+ return hidden_states
300
+
301
+
302
+ class LoRAIPAttnProcessor2_0(nn.Module):
303
+ r"""
304
+ Processor for implementing the LoRA attention mechanism.
305
+
306
+ Args:
307
+ hidden_size (`int`, *optional*):
308
+ The hidden size of the attention layer.
309
+ cross_attention_dim (`int`, *optional*):
310
+ The number of channels in the `encoder_hidden_states`.
311
+ rank (`int`, defaults to 4):
312
+ The dimension of the LoRA update matrices.
313
+ network_alpha (`int`, *optional*):
314
+ Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
315
+ """
316
+
317
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
318
+ super().__init__()
319
+
320
+ self.rank = rank
321
+ self.lora_scale = lora_scale
322
+ self.num_tokens = num_tokens
323
+
324
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
325
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
326
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
327
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
328
+
329
+
330
+ self.hidden_size = hidden_size
331
+ self.cross_attention_dim = cross_attention_dim
332
+ self.scale = scale
333
+
334
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
335
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
336
+
337
+ def __call__(
338
+ self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None
339
+ ):
340
+ residual = hidden_states
341
+
342
+ if attn.spatial_norm is not None:
343
+ hidden_states = attn.spatial_norm(hidden_states, temb)
344
+
345
+ input_ndim = hidden_states.ndim
346
+
347
+ if input_ndim == 4:
348
+ batch_size, channel, height, width = hidden_states.shape
349
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
350
+
351
+ batch_size, sequence_length, _ = (
352
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
353
+ )
354
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
355
+
356
+ if attn.group_norm is not None:
357
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
358
+
359
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
360
+ #query = attn.head_to_batch_dim(query)
361
+
362
+ if encoder_hidden_states is None:
363
+ encoder_hidden_states = hidden_states
364
+ else:
365
+ # get encoder_hidden_states, ip_hidden_states
366
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
367
+ encoder_hidden_states, ip_hidden_states = (
368
+ encoder_hidden_states[:, :end_pos, :],
369
+ encoder_hidden_states[:, end_pos:, :],
370
+ )
371
+ if attn.norm_cross:
372
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
373
+
374
+ # for text
375
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
376
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
377
+
378
+ inner_dim = key.shape[-1]
379
+ head_dim = inner_dim // attn.heads
380
+
381
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
382
+
383
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
384
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
385
+
386
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
387
+ # TODO: add support for attn.scale when we move to Torch 2.1
388
+ hidden_states = F.scaled_dot_product_attention(
389
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
390
+ )
391
+
392
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
393
+ hidden_states = hidden_states.to(query.dtype)
394
+
395
+ # for ip
396
+ ip_key = self.to_k_ip(ip_hidden_states)
397
+ ip_value = self.to_v_ip(ip_hidden_states)
398
+
399
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
400
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
401
+
402
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
403
+ # TODO: add support for attn.scale when we move to Torch 2.1
404
+ ip_hidden_states = F.scaled_dot_product_attention(
405
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
406
+ )
407
+
408
+
409
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
410
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
411
+
412
+ hidden_states = hidden_states + self.scale * ip_hidden_states
413
+
414
+ # linear proj
415
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
416
+ # dropout
417
+ hidden_states = attn.to_out[1](hidden_states)
418
+
419
+ if input_ndim == 4:
420
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
421
+
422
+ if attn.residual_connection:
423
+ hidden_states = hidden_states + residual
424
+
425
+ hidden_states = hidden_states / attn.rescale_output_factor
426
+
427
+ return hidden_states
ip_adapter/custom_pipelines.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from diffusers import StableDiffusionXLPipeline
5
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
6
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
7
+
8
+ from .utils import is_torch2_available
9
+
10
+ if is_torch2_available():
11
+ from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor
12
+ else:
13
+ from .attention_processor import IPAttnProcessor
14
+
15
+
16
+ class StableDiffusionXLCustomPipeline(StableDiffusionXLPipeline):
17
+ def set_scale(self, scale):
18
+ for attn_processor in self.unet.attn_processors.values():
19
+ if isinstance(attn_processor, IPAttnProcessor):
20
+ attn_processor.scale = scale
21
+
22
+ @torch.no_grad()
23
+ def __call__( # noqa: C901
24
+ self,
25
+ prompt: Optional[Union[str, List[str]]] = None,
26
+ prompt_2: Optional[Union[str, List[str]]] = None,
27
+ height: Optional[int] = None,
28
+ width: Optional[int] = None,
29
+ num_inference_steps: int = 50,
30
+ denoising_end: Optional[float] = None,
31
+ guidance_scale: float = 5.0,
32
+ negative_prompt: Optional[Union[str, List[str]]] = None,
33
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
34
+ num_images_per_prompt: Optional[int] = 1,
35
+ eta: float = 0.0,
36
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
37
+ latents: Optional[torch.FloatTensor] = None,
38
+ prompt_embeds: Optional[torch.FloatTensor] = None,
39
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
40
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
41
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
42
+ output_type: Optional[str] = "pil",
43
+ return_dict: bool = True,
44
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
45
+ callback_steps: int = 1,
46
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
47
+ guidance_rescale: float = 0.0,
48
+ original_size: Optional[Tuple[int, int]] = None,
49
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
50
+ target_size: Optional[Tuple[int, int]] = None,
51
+ negative_original_size: Optional[Tuple[int, int]] = None,
52
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
53
+ negative_target_size: Optional[Tuple[int, int]] = None,
54
+ control_guidance_start: float = 0.0,
55
+ control_guidance_end: float = 1.0,
56
+ ):
57
+ r"""
58
+ Function invoked when calling the pipeline for generation.
59
+
60
+ Args:
61
+ prompt (`str` or `List[str]`, *optional*):
62
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
63
+ instead.
64
+ prompt_2 (`str` or `List[str]`, *optional*):
65
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
66
+ used in both text-encoders
67
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
68
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
69
+ Anything below 512 pixels won't work well for
70
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
71
+ and checkpoints that are not specifically fine-tuned on low resolutions.
72
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
73
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
74
+ Anything below 512 pixels won't work well for
75
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
76
+ and checkpoints that are not specifically fine-tuned on low resolutions.
77
+ num_inference_steps (`int`, *optional*, defaults to 50):
78
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
79
+ expense of slower inference.
80
+ denoising_end (`float`, *optional*):
81
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
82
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
83
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
84
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
85
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
86
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
87
+ guidance_scale (`float`, *optional*, defaults to 5.0):
88
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
89
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
90
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
91
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
92
+ usually at the expense of lower image quality.
93
+ negative_prompt (`str` or `List[str]`, *optional*):
94
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
95
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
96
+ less than `1`).
97
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
98
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
99
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
100
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
101
+ The number of images to generate per prompt.
102
+ eta (`float`, *optional*, defaults to 0.0):
103
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
104
+ [`schedulers.DDIMScheduler`], will be ignored for others.
105
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
106
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
107
+ to make generation deterministic.
108
+ latents (`torch.FloatTensor`, *optional*):
109
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
110
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
111
+ tensor will ge generated by sampling using the supplied random `generator`.
112
+ prompt_embeds (`torch.FloatTensor`, *optional*):
113
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
114
+ provided, text embeddings will be generated from `prompt` input argument.
115
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
116
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
117
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
118
+ argument.
119
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
120
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
121
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
122
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
123
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
124
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
125
+ input argument.
126
+ output_type (`str`, *optional*, defaults to `"pil"`):
127
+ The output format of the generate image. Choose between
128
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
129
+ return_dict (`bool`, *optional*, defaults to `True`):
130
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
131
+ of a plain tuple.
132
+ callback (`Callable`, *optional*):
133
+ A function that will be called every `callback_steps` steps during inference. The function will be
134
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
135
+ callback_steps (`int`, *optional*, defaults to 1):
136
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
137
+ called at every step.
138
+ cross_attention_kwargs (`dict`, *optional*):
139
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
140
+ `self.processor` in
141
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
142
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
143
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
144
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
145
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
146
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
147
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
148
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
149
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
150
+ explained in section 2.2 of
151
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
152
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
153
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
154
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
155
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
156
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
157
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
158
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
159
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
160
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
161
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
162
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
163
+ micro-conditioning as explained in section 2.2 of
164
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
165
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
166
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
167
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
168
+ micro-conditioning as explained in section 2.2 of
169
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
170
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
171
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
172
+ To negatively condition the generation process based on a target image resolution. It should be as same
173
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
174
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
175
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
176
+ control_guidance_start (`float`, *optional*, defaults to 0.0):
177
+ The percentage of total steps at which the ControlNet starts applying.
178
+ control_guidance_end (`float`, *optional*, defaults to 1.0):
179
+ The percentage of total steps at which the ControlNet stops applying.
180
+
181
+ Examples:
182
+
183
+ Returns:
184
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
185
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
186
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
187
+ """
188
+ # 0. Default height and width to unet
189
+ height = height or self.default_sample_size * self.vae_scale_factor
190
+ width = width or self.default_sample_size * self.vae_scale_factor
191
+
192
+ original_size = original_size or (height, width)
193
+ target_size = target_size or (height, width)
194
+
195
+ # 1. Check inputs. Raise error if not correct
196
+ self.check_inputs(
197
+ prompt,
198
+ prompt_2,
199
+ height,
200
+ width,
201
+ callback_steps,
202
+ negative_prompt,
203
+ negative_prompt_2,
204
+ prompt_embeds,
205
+ negative_prompt_embeds,
206
+ pooled_prompt_embeds,
207
+ negative_pooled_prompt_embeds,
208
+ )
209
+
210
+ # 2. Define call parameters
211
+ if prompt is not None and isinstance(prompt, str):
212
+ batch_size = 1
213
+ elif prompt is not None and isinstance(prompt, list):
214
+ batch_size = len(prompt)
215
+ else:
216
+ batch_size = prompt_embeds.shape[0]
217
+
218
+ device = self._execution_device
219
+
220
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
221
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
222
+ # corresponds to doing no classifier free guidance.
223
+ do_classifier_free_guidance = guidance_scale > 1.0
224
+
225
+ # 3. Encode input prompt
226
+ text_encoder_lora_scale = (
227
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
228
+ )
229
+ (
230
+ prompt_embeds,
231
+ negative_prompt_embeds,
232
+ pooled_prompt_embeds,
233
+ negative_pooled_prompt_embeds,
234
+ ) = self.encode_prompt(
235
+ prompt=prompt,
236
+ prompt_2=prompt_2,
237
+ device=device,
238
+ num_images_per_prompt=num_images_per_prompt,
239
+ do_classifier_free_guidance=do_classifier_free_guidance,
240
+ negative_prompt=negative_prompt,
241
+ negative_prompt_2=negative_prompt_2,
242
+ prompt_embeds=prompt_embeds,
243
+ negative_prompt_embeds=negative_prompt_embeds,
244
+ pooled_prompt_embeds=pooled_prompt_embeds,
245
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
246
+ lora_scale=text_encoder_lora_scale,
247
+ )
248
+
249
+ # 4. Prepare timesteps
250
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
251
+
252
+ timesteps = self.scheduler.timesteps
253
+
254
+ # 5. Prepare latent variables
255
+ num_channels_latents = self.unet.config.in_channels
256
+ latents = self.prepare_latents(
257
+ batch_size * num_images_per_prompt,
258
+ num_channels_latents,
259
+ height,
260
+ width,
261
+ prompt_embeds.dtype,
262
+ device,
263
+ generator,
264
+ latents,
265
+ )
266
+
267
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
268
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
269
+
270
+ # 7. Prepare added time ids & embeddings
271
+ add_text_embeds = pooled_prompt_embeds
272
+ if self.text_encoder_2 is None:
273
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
274
+ else:
275
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
276
+
277
+ add_time_ids = self._get_add_time_ids(
278
+ original_size,
279
+ crops_coords_top_left,
280
+ target_size,
281
+ dtype=prompt_embeds.dtype,
282
+ text_encoder_projection_dim=text_encoder_projection_dim,
283
+ )
284
+ if negative_original_size is not None and negative_target_size is not None:
285
+ negative_add_time_ids = self._get_add_time_ids(
286
+ negative_original_size,
287
+ negative_crops_coords_top_left,
288
+ negative_target_size,
289
+ dtype=prompt_embeds.dtype,
290
+ text_encoder_projection_dim=text_encoder_projection_dim,
291
+ )
292
+ else:
293
+ negative_add_time_ids = add_time_ids
294
+
295
+ if do_classifier_free_guidance:
296
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
297
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
298
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
299
+
300
+ prompt_embeds = prompt_embeds.to(device)
301
+ add_text_embeds = add_text_embeds.to(device)
302
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
303
+
304
+ # 8. Denoising loop
305
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
306
+
307
+ # 7.1 Apply denoising_end
308
+ if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
309
+ discrete_timestep_cutoff = int(
310
+ round(
311
+ self.scheduler.config.num_train_timesteps
312
+ - (denoising_end * self.scheduler.config.num_train_timesteps)
313
+ )
314
+ )
315
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
316
+ timesteps = timesteps[:num_inference_steps]
317
+
318
+ # get init conditioning scale
319
+ for attn_processor in self.unet.attn_processors.values():
320
+ if isinstance(attn_processor, IPAttnProcessor):
321
+ conditioning_scale = attn_processor.scale
322
+ break
323
+
324
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
325
+ for i, t in enumerate(timesteps):
326
+ if (i / len(timesteps) < control_guidance_start) or ((i + 1) / len(timesteps) > control_guidance_end):
327
+ self.set_scale(0.0)
328
+ else:
329
+ self.set_scale(conditioning_scale)
330
+
331
+ # expand the latents if we are doing classifier free guidance
332
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
333
+
334
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
335
+
336
+ # predict the noise residual
337
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
338
+ noise_pred = self.unet(
339
+ latent_model_input,
340
+ t,
341
+ encoder_hidden_states=prompt_embeds,
342
+ cross_attention_kwargs=cross_attention_kwargs,
343
+ added_cond_kwargs=added_cond_kwargs,
344
+ return_dict=False,
345
+ )[0]
346
+
347
+ # perform guidance
348
+ if do_classifier_free_guidance:
349
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
350
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
351
+
352
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
353
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
354
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
355
+
356
+ # compute the previous noisy sample x_t -> x_t-1
357
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
358
+
359
+ # call the callback, if provided
360
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
361
+ progress_bar.update()
362
+ if callback is not None and i % callback_steps == 0:
363
+ callback(i, t, latents)
364
+
365
+ if not output_type == "latent":
366
+ # make sure the VAE is in float32 mode, as it overflows in float16
367
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
368
+
369
+ if needs_upcasting:
370
+ self.upcast_vae()
371
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
372
+
373
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
374
+
375
+ # cast back to fp16 if needed
376
+ if needs_upcasting:
377
+ self.vae.to(dtype=torch.float16)
378
+ else:
379
+ image = latents
380
+
381
+ if output_type != "latent":
382
+ # apply watermark if available
383
+ if self.watermark is not None:
384
+ image = self.watermark.apply_watermark(image)
385
+
386
+ image = self.image_processor.postprocess(image, output_type=output_type)
387
+
388
+ # Offload all models
389
+ self.maybe_free_model_hooks()
390
+
391
+ if not return_dict:
392
+ return (image,)
393
+
394
+ return StableDiffusionXLPipelineOutput(images=image)
ip_adapter/ip_adapter.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .utils import is_torch2_available, get_generator
12
+
13
+ if is_torch2_available():
14
+ from .attention_processor import (
15
+ AttnProcessor2_0 as AttnProcessor,
16
+ )
17
+ from .attention_processor import (
18
+ CNAttnProcessor2_0 as CNAttnProcessor,
19
+ )
20
+ from .attention_processor import (
21
+ IPAttnProcessor2_0 as IPAttnProcessor,
22
+ )
23
+ else:
24
+ from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
25
+ from .resampler import Resampler
26
+
27
+
28
+ class ImageProjModel(torch.nn.Module):
29
+ """Projection Model"""
30
+
31
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
32
+ super().__init__()
33
+
34
+ self.generator = None
35
+ self.cross_attention_dim = cross_attention_dim
36
+ self.clip_extra_context_tokens = clip_extra_context_tokens
37
+ self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
38
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
39
+
40
+ def forward(self, image_embeds):
41
+ embeds = image_embeds
42
+ clip_extra_context_tokens = self.proj(embeds).reshape(
43
+ -1, self.clip_extra_context_tokens, self.cross_attention_dim
44
+ )
45
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
46
+ return clip_extra_context_tokens
47
+
48
+
49
+ class MLPProjModel(torch.nn.Module):
50
+ """SD model with image prompt"""
51
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
52
+ super().__init__()
53
+
54
+ self.proj = torch.nn.Sequential(
55
+ torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
56
+ torch.nn.GELU(),
57
+ torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
58
+ torch.nn.LayerNorm(cross_attention_dim)
59
+ )
60
+
61
+ def forward(self, image_embeds):
62
+ clip_extra_context_tokens = self.proj(image_embeds)
63
+ return clip_extra_context_tokens
64
+
65
+
66
+ class IPAdapter:
67
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
68
+ self.device = device
69
+ self.image_encoder_path = image_encoder_path
70
+ self.ip_ckpt = ip_ckpt
71
+ self.num_tokens = num_tokens
72
+
73
+ self.pipe = sd_pipe.to(self.device)
74
+ self.set_ip_adapter()
75
+
76
+ # load image encoder
77
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
78
+ self.device, dtype=torch.float16
79
+ )
80
+ self.clip_image_processor = CLIPImageProcessor()
81
+ # image proj model
82
+ self.image_proj_model = self.init_proj()
83
+
84
+ self.load_ip_adapter()
85
+
86
+ def init_proj(self):
87
+ image_proj_model = ImageProjModel(
88
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
89
+ clip_embeddings_dim=self.image_encoder.config.projection_dim,
90
+ clip_extra_context_tokens=self.num_tokens,
91
+ ).to(self.device, dtype=torch.float16)
92
+ return image_proj_model
93
+
94
+ def set_ip_adapter(self):
95
+ unet = self.pipe.unet
96
+ attn_procs = {}
97
+ for name in unet.attn_processors.keys():
98
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
99
+ if name.startswith("mid_block"):
100
+ hidden_size = unet.config.block_out_channels[-1]
101
+ elif name.startswith("up_blocks"):
102
+ block_id = int(name[len("up_blocks.")])
103
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
104
+ elif name.startswith("down_blocks"):
105
+ block_id = int(name[len("down_blocks.")])
106
+ hidden_size = unet.config.block_out_channels[block_id]
107
+ if cross_attention_dim is None:
108
+ attn_procs[name] = AttnProcessor()
109
+ else:
110
+ attn_procs[name] = IPAttnProcessor(
111
+ hidden_size=hidden_size,
112
+ cross_attention_dim=cross_attention_dim,
113
+ scale=1.0,
114
+ num_tokens=self.num_tokens,
115
+ ).to(self.device, dtype=torch.float16)
116
+ unet.set_attn_processor(attn_procs)
117
+ if hasattr(self.pipe, "controlnet"):
118
+ if isinstance(self.pipe.controlnet, MultiControlNetModel):
119
+ for controlnet in self.pipe.controlnet.nets:
120
+ controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
121
+ else:
122
+ self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
123
+
124
+ def load_ip_adapter(self):
125
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
126
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
127
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
128
+ for key in f.keys():
129
+ if key.startswith("image_proj."):
130
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
131
+ elif key.startswith("ip_adapter."):
132
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
133
+ else:
134
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
135
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
136
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
137
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
138
+
139
+ @torch.inference_mode()
140
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
141
+ if pil_image is not None:
142
+ if isinstance(pil_image, Image.Image):
143
+ pil_image = [pil_image]
144
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
145
+ clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
146
+ else:
147
+ clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
148
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
149
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
150
+ return image_prompt_embeds, uncond_image_prompt_embeds
151
+
152
+ def set_scale(self, scale):
153
+ for attn_processor in self.pipe.unet.attn_processors.values():
154
+ if isinstance(attn_processor, IPAttnProcessor):
155
+ attn_processor.scale = scale
156
+
157
+ def generate(
158
+ self,
159
+ pil_image=None,
160
+ clip_image_embeds=None,
161
+ prompt=None,
162
+ negative_prompt=None,
163
+ scale=1.0,
164
+ num_samples=4,
165
+ seed=None,
166
+ guidance_scale=7.5,
167
+ num_inference_steps=30,
168
+ **kwargs,
169
+ ):
170
+ self.set_scale(scale)
171
+
172
+ if pil_image is not None:
173
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
174
+ else:
175
+ num_prompts = clip_image_embeds.size(0)
176
+
177
+ if prompt is None:
178
+ prompt = "best quality, high quality"
179
+ if negative_prompt is None:
180
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
181
+
182
+ if not isinstance(prompt, List):
183
+ prompt = [prompt] * num_prompts
184
+ if not isinstance(negative_prompt, List):
185
+ negative_prompt = [negative_prompt] * num_prompts
186
+
187
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
188
+ pil_image=pil_image, clip_image_embeds=clip_image_embeds
189
+ )
190
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
191
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
192
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
193
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
194
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
195
+
196
+ with torch.inference_mode():
197
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
198
+ prompt,
199
+ device=self.device,
200
+ num_images_per_prompt=num_samples,
201
+ do_classifier_free_guidance=True,
202
+ negative_prompt=negative_prompt,
203
+ )
204
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
205
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
206
+
207
+ generator = get_generator(seed, self.device)
208
+
209
+ images = self.pipe(
210
+ prompt_embeds=prompt_embeds,
211
+ negative_prompt_embeds=negative_prompt_embeds,
212
+ guidance_scale=guidance_scale,
213
+ num_inference_steps=num_inference_steps,
214
+ generator=generator,
215
+ **kwargs,
216
+ ).images
217
+
218
+ return images
219
+
220
+
221
+ class IPAdapterXL(IPAdapter):
222
+ """SDXL"""
223
+
224
+ def generate(
225
+ self,
226
+ pil_image,
227
+ prompt=None,
228
+ negative_prompt=None,
229
+ scale=1.0,
230
+ num_samples=4,
231
+ seed=None,
232
+ num_inference_steps=30,
233
+ **kwargs,
234
+ ):
235
+ self.set_scale(scale)
236
+
237
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
238
+
239
+ if prompt is None:
240
+ prompt = "best quality, high quality"
241
+ if negative_prompt is None:
242
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
243
+
244
+ if not isinstance(prompt, List):
245
+ prompt = [prompt] * num_prompts
246
+ if not isinstance(negative_prompt, List):
247
+ negative_prompt = [negative_prompt] * num_prompts
248
+
249
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
250
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
251
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
252
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
253
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
254
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
255
+
256
+ with torch.inference_mode():
257
+ (
258
+ prompt_embeds,
259
+ negative_prompt_embeds,
260
+ pooled_prompt_embeds,
261
+ negative_pooled_prompt_embeds,
262
+ ) = self.pipe.encode_prompt(
263
+ prompt,
264
+ num_images_per_prompt=num_samples,
265
+ do_classifier_free_guidance=True,
266
+ negative_prompt=negative_prompt,
267
+ )
268
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
269
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
270
+
271
+ self.generator = get_generator(seed, self.device)
272
+
273
+ images = self.pipe(
274
+ prompt_embeds=prompt_embeds,
275
+ negative_prompt_embeds=negative_prompt_embeds,
276
+ pooled_prompt_embeds=pooled_prompt_embeds,
277
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
278
+ num_inference_steps=num_inference_steps,
279
+ generator=self.generator,
280
+ **kwargs,
281
+ ).images
282
+
283
+ return images
284
+
285
+
286
+ class IPAdapterPlus(IPAdapter):
287
+ """IP-Adapter with fine-grained features"""
288
+
289
+ def init_proj(self):
290
+ image_proj_model = Resampler(
291
+ dim=self.pipe.unet.config.cross_attention_dim,
292
+ depth=4,
293
+ dim_head=64,
294
+ heads=12,
295
+ num_queries=self.num_tokens,
296
+ embedding_dim=self.image_encoder.config.hidden_size,
297
+ output_dim=self.pipe.unet.config.cross_attention_dim,
298
+ ff_mult=4,
299
+ ).to(self.device, dtype=torch.float16)
300
+ return image_proj_model
301
+
302
+ @torch.inference_mode()
303
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
304
+ if isinstance(pil_image, Image.Image):
305
+ pil_image = [pil_image]
306
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
307
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
308
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
309
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
310
+ uncond_clip_image_embeds = self.image_encoder(
311
+ torch.zeros_like(clip_image), output_hidden_states=True
312
+ ).hidden_states[-2]
313
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
314
+ return image_prompt_embeds, uncond_image_prompt_embeds
315
+
316
+
317
+ class IPAdapterFull(IPAdapterPlus):
318
+ """IP-Adapter with full features"""
319
+
320
+ def init_proj(self):
321
+ image_proj_model = MLPProjModel(
322
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
323
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
324
+ ).to(self.device, dtype=torch.float16)
325
+ return image_proj_model
326
+
327
+
328
+ class IPAdapterPlusXL(IPAdapter):
329
+ """SDXL"""
330
+
331
+ def init_proj(self):
332
+ image_proj_model = Resampler(
333
+ dim=1280,
334
+ depth=4,
335
+ dim_head=64,
336
+ heads=20,
337
+ num_queries=self.num_tokens,
338
+ embedding_dim=self.image_encoder.config.hidden_size,
339
+ output_dim=self.pipe.unet.config.cross_attention_dim,
340
+ ff_mult=4,
341
+ ).to(self.device, dtype=torch.float16)
342
+ return image_proj_model
343
+
344
+ @torch.inference_mode()
345
+ def get_image_embeds(self, pil_image):
346
+ if isinstance(pil_image, Image.Image):
347
+ pil_image = [pil_image]
348
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
349
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
350
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
351
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
352
+ uncond_clip_image_embeds = self.image_encoder(
353
+ torch.zeros_like(clip_image), output_hidden_states=True
354
+ ).hidden_states[-2]
355
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
356
+ return image_prompt_embeds, uncond_image_prompt_embeds
357
+
358
+ def generate(
359
+ self,
360
+ pil_image,
361
+ prompt=None,
362
+ negative_prompt=None,
363
+ scale=1.0,
364
+ num_samples=4,
365
+ seed=None,
366
+ num_inference_steps=30,
367
+ **kwargs,
368
+ ):
369
+ self.set_scale(scale)
370
+
371
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
372
+
373
+ if prompt is None:
374
+ prompt = "best quality, high quality"
375
+ if negative_prompt is None:
376
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
377
+
378
+ if not isinstance(prompt, List):
379
+ prompt = [prompt] * num_prompts
380
+ if not isinstance(negative_prompt, List):
381
+ negative_prompt = [negative_prompt] * num_prompts
382
+
383
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
384
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
385
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
386
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
387
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
388
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
389
+
390
+ with torch.inference_mode():
391
+ (
392
+ prompt_embeds,
393
+ negative_prompt_embeds,
394
+ pooled_prompt_embeds,
395
+ negative_pooled_prompt_embeds,
396
+ ) = self.pipe.encode_prompt(
397
+ prompt,
398
+ num_images_per_prompt=num_samples,
399
+ do_classifier_free_guidance=True,
400
+ negative_prompt=negative_prompt,
401
+ )
402
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
403
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
404
+
405
+ generator = get_generator(seed, self.device)
406
+
407
+ images = self.pipe(
408
+ prompt_embeds=prompt_embeds,
409
+ negative_prompt_embeds=negative_prompt_embeds,
410
+ pooled_prompt_embeds=pooled_prompt_embeds,
411
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
412
+ num_inference_steps=num_inference_steps,
413
+ generator=generator,
414
+ **kwargs,
415
+ ).images
416
+
417
+ return images
ip_adapter/ip_adapter_faceid.py ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
12
+ from .utils import is_torch2_available, get_generator
13
+
14
+ USE_DAFAULT_ATTN = False # should be True for visualization_attnmap
15
+ if is_torch2_available() and (not USE_DAFAULT_ATTN):
16
+ from .attention_processor_faceid import (
17
+ LoRAAttnProcessor2_0 as LoRAAttnProcessor,
18
+ )
19
+ from .attention_processor_faceid import (
20
+ LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor,
21
+ )
22
+ else:
23
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
24
+ from .resampler import PerceiverAttention, FeedForward
25
+
26
+
27
+ class FacePerceiverResampler(torch.nn.Module):
28
+ def __init__(
29
+ self,
30
+ *,
31
+ dim=768,
32
+ depth=4,
33
+ dim_head=64,
34
+ heads=16,
35
+ embedding_dim=1280,
36
+ output_dim=768,
37
+ ff_mult=4,
38
+ ):
39
+ super().__init__()
40
+
41
+ self.proj_in = torch.nn.Linear(embedding_dim, dim)
42
+ self.proj_out = torch.nn.Linear(dim, output_dim)
43
+ self.norm_out = torch.nn.LayerNorm(output_dim)
44
+ self.layers = torch.nn.ModuleList([])
45
+ for _ in range(depth):
46
+ self.layers.append(
47
+ torch.nn.ModuleList(
48
+ [
49
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
50
+ FeedForward(dim=dim, mult=ff_mult),
51
+ ]
52
+ )
53
+ )
54
+
55
+ def forward(self, latents, x):
56
+ x = self.proj_in(x)
57
+ for attn, ff in self.layers:
58
+ latents = attn(x, latents) + latents
59
+ latents = ff(latents) + latents
60
+ latents = self.proj_out(latents)
61
+ return self.norm_out(latents)
62
+
63
+
64
+ class MLPProjModel(torch.nn.Module):
65
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
66
+ super().__init__()
67
+
68
+ self.cross_attention_dim = cross_attention_dim
69
+ self.num_tokens = num_tokens
70
+
71
+ self.proj = torch.nn.Sequential(
72
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
73
+ torch.nn.GELU(),
74
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
75
+ )
76
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
77
+
78
+ def forward(self, id_embeds):
79
+ x = self.proj(id_embeds)
80
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
81
+ x = self.norm(x)
82
+ return x
83
+
84
+
85
+ class ProjPlusModel(torch.nn.Module):
86
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
87
+ super().__init__()
88
+
89
+ self.cross_attention_dim = cross_attention_dim
90
+ self.num_tokens = num_tokens
91
+
92
+ self.proj = torch.nn.Sequential(
93
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
94
+ torch.nn.GELU(),
95
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
96
+ )
97
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
98
+
99
+ self.perceiver_resampler = FacePerceiverResampler(
100
+ dim=cross_attention_dim,
101
+ depth=4,
102
+ dim_head=64,
103
+ heads=cross_attention_dim // 64,
104
+ embedding_dim=clip_embeddings_dim,
105
+ output_dim=cross_attention_dim,
106
+ ff_mult=4,
107
+ )
108
+
109
+ def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
110
+
111
+ x = self.proj(id_embeds)
112
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
113
+ x = self.norm(x)
114
+ out = self.perceiver_resampler(x, clip_embeds)
115
+ if shortcut:
116
+ out = x + scale * out
117
+ return out
118
+
119
+
120
+ class IPAdapterFaceID:
121
+ def __init__(self, sd_pipe, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
122
+ self.device = device
123
+ self.ip_ckpt = ip_ckpt
124
+ self.lora_rank = lora_rank
125
+ self.num_tokens = num_tokens
126
+ self.torch_dtype = torch_dtype
127
+
128
+ self.pipe = sd_pipe.to(self.device)
129
+ self.set_ip_adapter()
130
+
131
+ # image proj model
132
+ self.image_proj_model = self.init_proj()
133
+
134
+ self.load_ip_adapter()
135
+
136
+ def init_proj(self):
137
+ image_proj_model = MLPProjModel(
138
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
139
+ id_embeddings_dim=512,
140
+ num_tokens=self.num_tokens,
141
+ ).to(self.device, dtype=self.torch_dtype)
142
+ return image_proj_model
143
+
144
+ def set_ip_adapter(self):
145
+ unet = self.pipe.unet
146
+ attn_procs = {}
147
+ for name in unet.attn_processors.keys():
148
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
149
+ if name.startswith("mid_block"):
150
+ hidden_size = unet.config.block_out_channels[-1]
151
+ elif name.startswith("up_blocks"):
152
+ block_id = int(name[len("up_blocks.")])
153
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
154
+ elif name.startswith("down_blocks"):
155
+ block_id = int(name[len("down_blocks.")])
156
+ hidden_size = unet.config.block_out_channels[block_id]
157
+ if cross_attention_dim is None:
158
+ attn_procs[name] = LoRAAttnProcessor(
159
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
160
+ ).to(self.device, dtype=self.torch_dtype)
161
+ else:
162
+ attn_procs[name] = LoRAIPAttnProcessor(
163
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
164
+ ).to(self.device, dtype=self.torch_dtype)
165
+ unet.set_attn_processor(attn_procs)
166
+
167
+ def load_ip_adapter(self):
168
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
169
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
170
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
171
+ for key in f.keys():
172
+ if key.startswith("image_proj."):
173
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
174
+ elif key.startswith("ip_adapter."):
175
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
176
+ else:
177
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
178
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
179
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
180
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
181
+
182
+ @torch.inference_mode()
183
+ def get_image_embeds(self, faceid_embeds):
184
+
185
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
186
+ image_prompt_embeds = self.image_proj_model(faceid_embeds)
187
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
188
+ return image_prompt_embeds, uncond_image_prompt_embeds
189
+
190
+ def set_scale(self, scale):
191
+ for attn_processor in self.pipe.unet.attn_processors.values():
192
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
193
+ attn_processor.scale = scale
194
+
195
+ def generate(
196
+ self,
197
+ faceid_embeds=None,
198
+ prompt=None,
199
+ negative_prompt=None,
200
+ scale=1.0,
201
+ num_samples=4,
202
+ seed=None,
203
+ guidance_scale=7.5,
204
+ num_inference_steps=30,
205
+ **kwargs,
206
+ ):
207
+ self.set_scale(scale)
208
+
209
+
210
+ num_prompts = faceid_embeds.size(0)
211
+
212
+ if prompt is None:
213
+ prompt = "best quality, high quality"
214
+ if negative_prompt is None:
215
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
216
+
217
+ if not isinstance(prompt, List):
218
+ prompt = [prompt] * num_prompts
219
+ if not isinstance(negative_prompt, List):
220
+ negative_prompt = [negative_prompt] * num_prompts
221
+
222
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
223
+
224
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
225
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
226
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
227
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
228
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
229
+
230
+ with torch.inference_mode():
231
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
232
+ prompt,
233
+ device=self.device,
234
+ num_images_per_prompt=num_samples,
235
+ do_classifier_free_guidance=True,
236
+ negative_prompt=negative_prompt,
237
+ )
238
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
239
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
240
+
241
+ generator = get_generator(seed, self.device)
242
+
243
+ images = self.pipe(
244
+ prompt_embeds=prompt_embeds,
245
+ negative_prompt_embeds=negative_prompt_embeds,
246
+ guidance_scale=guidance_scale,
247
+ num_inference_steps=num_inference_steps,
248
+ generator=generator,
249
+ **kwargs,
250
+ ).images
251
+
252
+ return images
253
+
254
+
255
+ class IPAdapterFaceIDPlus:
256
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
257
+ self.device = device
258
+ self.image_encoder_path = image_encoder_path
259
+ self.ip_ckpt = ip_ckpt
260
+ self.lora_rank = lora_rank
261
+ self.num_tokens = num_tokens
262
+ self.torch_dtype = torch_dtype
263
+
264
+ self.pipe = sd_pipe.to(self.device)
265
+ self.set_ip_adapter()
266
+
267
+ # load image encoder
268
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
269
+ self.device, dtype=self.torch_dtype
270
+ )
271
+ self.clip_image_processor = CLIPImageProcessor()
272
+ # image proj model
273
+ self.image_proj_model = self.init_proj()
274
+
275
+ self.load_ip_adapter()
276
+
277
+ def init_proj(self):
278
+ image_proj_model = ProjPlusModel(
279
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
280
+ id_embeddings_dim=512,
281
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
282
+ num_tokens=self.num_tokens,
283
+ ).to(self.device, dtype=self.torch_dtype)
284
+ return image_proj_model
285
+
286
+ def set_ip_adapter(self):
287
+ unet = self.pipe.unet
288
+ attn_procs = {}
289
+ for name in unet.attn_processors.keys():
290
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
291
+ if name.startswith("mid_block"):
292
+ hidden_size = unet.config.block_out_channels[-1]
293
+ elif name.startswith("up_blocks"):
294
+ block_id = int(name[len("up_blocks.")])
295
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
296
+ elif name.startswith("down_blocks"):
297
+ block_id = int(name[len("down_blocks.")])
298
+ hidden_size = unet.config.block_out_channels[block_id]
299
+ if cross_attention_dim is None:
300
+ attn_procs[name] = LoRAAttnProcessor(
301
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
302
+ ).to(self.device, dtype=self.torch_dtype)
303
+ else:
304
+ attn_procs[name] = LoRAIPAttnProcessor(
305
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
306
+ ).to(self.device, dtype=self.torch_dtype)
307
+ unet.set_attn_processor(attn_procs)
308
+
309
+ def load_ip_adapter(self):
310
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
311
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
312
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
313
+ for key in f.keys():
314
+ if key.startswith("image_proj."):
315
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
316
+ elif key.startswith("ip_adapter."):
317
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
318
+ else:
319
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
320
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
321
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
322
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
323
+
324
+ @torch.inference_mode()
325
+ def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut):
326
+ if isinstance(face_image, Image.Image):
327
+ pil_image = [face_image]
328
+ clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
329
+ clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
330
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
331
+ uncond_clip_image_embeds = self.image_encoder(
332
+ torch.zeros_like(clip_image), output_hidden_states=True
333
+ ).hidden_states[-2]
334
+
335
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
336
+ image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
337
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
338
+ return image_prompt_embeds, uncond_image_prompt_embeds
339
+
340
+ def set_scale(self, scale):
341
+ for attn_processor in self.pipe.unet.attn_processors.values():
342
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
343
+ attn_processor.scale = scale
344
+
345
+ def generate(
346
+ self,
347
+ face_image=None,
348
+ faceid_embeds=None,
349
+ prompt=None,
350
+ negative_prompt=None,
351
+ scale=1.0,
352
+ num_samples=4,
353
+ seed=None,
354
+ guidance_scale=7.5,
355
+ num_inference_steps=30,
356
+ s_scale=1.0,
357
+ shortcut=False,
358
+ **kwargs,
359
+ ):
360
+ self.set_scale(scale)
361
+
362
+
363
+ num_prompts = faceid_embeds.size(0)
364
+
365
+ if prompt is None:
366
+ prompt = "best quality, high quality"
367
+ if negative_prompt is None:
368
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
369
+
370
+ if not isinstance(prompt, List):
371
+ prompt = [prompt] * num_prompts
372
+ if not isinstance(negative_prompt, List):
373
+ negative_prompt = [negative_prompt] * num_prompts
374
+
375
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
376
+
377
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
378
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
379
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
380
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
381
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
382
+
383
+ with torch.inference_mode():
384
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
385
+ prompt,
386
+ device=self.device,
387
+ num_images_per_prompt=num_samples,
388
+ do_classifier_free_guidance=True,
389
+ negative_prompt=negative_prompt,
390
+ )
391
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
392
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
393
+
394
+ generator = get_generator(seed, self.device)
395
+
396
+ images = self.pipe(
397
+ prompt_embeds=prompt_embeds,
398
+ negative_prompt_embeds=negative_prompt_embeds,
399
+ guidance_scale=guidance_scale,
400
+ num_inference_steps=num_inference_steps,
401
+ generator=generator,
402
+ **kwargs,
403
+ ).images
404
+
405
+ return images
406
+
407
+
408
+ class IPAdapterFaceIDXL(IPAdapterFaceID):
409
+ """SDXL"""
410
+
411
+ def generate(
412
+ self,
413
+ faceid_embeds=None,
414
+ prompt=None,
415
+ negative_prompt=None,
416
+ scale=1.0,
417
+ num_samples=4,
418
+ seed=None,
419
+ num_inference_steps=30,
420
+ **kwargs,
421
+ ):
422
+ self.set_scale(scale)
423
+
424
+ num_prompts = faceid_embeds.size(0)
425
+
426
+ if prompt is None:
427
+ prompt = "best quality, high quality"
428
+ if negative_prompt is None:
429
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
430
+
431
+ if not isinstance(prompt, List):
432
+ prompt = [prompt] * num_prompts
433
+ if not isinstance(negative_prompt, List):
434
+ negative_prompt = [negative_prompt] * num_prompts
435
+
436
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
437
+
438
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
439
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
440
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
441
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
442
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
443
+
444
+ with torch.inference_mode():
445
+ (
446
+ prompt_embeds,
447
+ negative_prompt_embeds,
448
+ pooled_prompt_embeds,
449
+ negative_pooled_prompt_embeds,
450
+ ) = self.pipe.encode_prompt(
451
+ prompt,
452
+ num_images_per_prompt=num_samples,
453
+ do_classifier_free_guidance=True,
454
+ negative_prompt=negative_prompt,
455
+ )
456
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
457
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
458
+
459
+ generator = get_generator(seed, self.device)
460
+
461
+ images = self.pipe(
462
+ prompt_embeds=prompt_embeds,
463
+ negative_prompt_embeds=negative_prompt_embeds,
464
+ pooled_prompt_embeds=pooled_prompt_embeds,
465
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
466
+ num_inference_steps=num_inference_steps,
467
+ generator=generator,
468
+ **kwargs,
469
+ ).images
470
+
471
+ return images
472
+
473
+
474
+ class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus):
475
+ """SDXL"""
476
+
477
+ def generate(
478
+ self,
479
+ face_image=None,
480
+ faceid_embeds=None,
481
+ prompt=None,
482
+ negative_prompt=None,
483
+ scale=1.0,
484
+ num_samples=4,
485
+ seed=None,
486
+ guidance_scale=7.5,
487
+ num_inference_steps=30,
488
+ s_scale=1.0,
489
+ shortcut=True,
490
+ **kwargs,
491
+ ):
492
+ self.set_scale(scale)
493
+
494
+ num_prompts = faceid_embeds.size(0)
495
+
496
+ if prompt is None:
497
+ prompt = "best quality, high quality"
498
+ if negative_prompt is None:
499
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
500
+
501
+ if not isinstance(prompt, List):
502
+ prompt = [prompt] * num_prompts
503
+ if not isinstance(negative_prompt, List):
504
+ negative_prompt = [negative_prompt] * num_prompts
505
+
506
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
507
+
508
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
509
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
510
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
511
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
512
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
513
+
514
+ with torch.inference_mode():
515
+ (
516
+ prompt_embeds,
517
+ negative_prompt_embeds,
518
+ pooled_prompt_embeds,
519
+ negative_pooled_prompt_embeds,
520
+ ) = self.pipe.encode_prompt(
521
+ prompt,
522
+ num_images_per_prompt=num_samples,
523
+ do_classifier_free_guidance=True,
524
+ negative_prompt=negative_prompt,
525
+ )
526
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
527
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
528
+
529
+ generator = get_generator(seed, self.device)
530
+
531
+ images = self.pipe(
532
+ prompt_embeds=prompt_embeds,
533
+ negative_prompt_embeds=negative_prompt_embeds,
534
+ pooled_prompt_embeds=pooled_prompt_embeds,
535
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
536
+ num_inference_steps=num_inference_steps,
537
+ generator=generator,
538
+ guidance_scale=guidance_scale,
539
+ **kwargs,
540
+ ).images
541
+
542
+ return images
ip_adapter/ip_adapter_faceid_separate.py ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .utils import is_torch2_available, get_generator
12
+
13
+ USE_DAFAULT_ATTN = False # should be True for visualization_attnmap
14
+ if is_torch2_available() and (not USE_DAFAULT_ATTN):
15
+ from .attention_processor import (
16
+ AttnProcessor2_0 as AttnProcessor,
17
+ )
18
+ from .attention_processor import (
19
+ IPAttnProcessor2_0 as IPAttnProcessor,
20
+ )
21
+ else:
22
+ from .attention_processor import AttnProcessor, IPAttnProcessor
23
+ from .resampler import PerceiverAttention, FeedForward
24
+
25
+
26
+ class FacePerceiverResampler(torch.nn.Module):
27
+ def __init__(
28
+ self,
29
+ *,
30
+ dim=768,
31
+ depth=4,
32
+ dim_head=64,
33
+ heads=16,
34
+ embedding_dim=1280,
35
+ output_dim=768,
36
+ ff_mult=4,
37
+ ):
38
+ super().__init__()
39
+
40
+ self.proj_in = torch.nn.Linear(embedding_dim, dim)
41
+ self.proj_out = torch.nn.Linear(dim, output_dim)
42
+ self.norm_out = torch.nn.LayerNorm(output_dim)
43
+ self.layers = torch.nn.ModuleList([])
44
+ for _ in range(depth):
45
+ self.layers.append(
46
+ torch.nn.ModuleList(
47
+ [
48
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
49
+ FeedForward(dim=dim, mult=ff_mult),
50
+ ]
51
+ )
52
+ )
53
+
54
+ def forward(self, latents, x):
55
+ x = self.proj_in(x)
56
+ for attn, ff in self.layers:
57
+ latents = attn(x, latents) + latents
58
+ latents = ff(latents) + latents
59
+ latents = self.proj_out(latents)
60
+ return self.norm_out(latents)
61
+
62
+
63
+ class MLPProjModel(torch.nn.Module):
64
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
65
+ super().__init__()
66
+
67
+ self.cross_attention_dim = cross_attention_dim
68
+ self.num_tokens = num_tokens
69
+
70
+ self.proj = torch.nn.Sequential(
71
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
72
+ torch.nn.GELU(),
73
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
74
+ )
75
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
76
+
77
+ def forward(self, id_embeds):
78
+ x = self.proj(id_embeds)
79
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
80
+ x = self.norm(x)
81
+ return x
82
+
83
+
84
+ class ProjPlusModel(torch.nn.Module):
85
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
86
+ super().__init__()
87
+
88
+ self.cross_attention_dim = cross_attention_dim
89
+ self.num_tokens = num_tokens
90
+
91
+ self.proj = torch.nn.Sequential(
92
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
93
+ torch.nn.GELU(),
94
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
95
+ )
96
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
97
+
98
+ self.perceiver_resampler = FacePerceiverResampler(
99
+ dim=cross_attention_dim,
100
+ depth=4,
101
+ dim_head=64,
102
+ heads=cross_attention_dim // 64,
103
+ embedding_dim=clip_embeddings_dim,
104
+ output_dim=cross_attention_dim,
105
+ ff_mult=4,
106
+ )
107
+
108
+ def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
109
+
110
+ x = self.proj(id_embeds)
111
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
112
+ x = self.norm(x)
113
+ out = self.perceiver_resampler(x, clip_embeds)
114
+ if shortcut:
115
+ out = x + scale * out
116
+ return out
117
+
118
+
119
+ class IPAdapterFaceID:
120
+ def __init__(self, sd_pipe, ip_ckpt, device, num_tokens=4, n_cond=1, torch_dtype=torch.float16):
121
+ self.device = device
122
+ self.ip_ckpt = ip_ckpt
123
+ self.num_tokens = num_tokens
124
+ self.n_cond = n_cond
125
+ self.torch_dtype = torch_dtype
126
+
127
+ self.pipe = sd_pipe.to(self.device)
128
+ self.set_ip_adapter()
129
+
130
+ # image proj model
131
+ self.image_proj_model = self.init_proj()
132
+
133
+ self.load_ip_adapter()
134
+
135
+ def init_proj(self):
136
+ image_proj_model = MLPProjModel(
137
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
138
+ id_embeddings_dim=512,
139
+ num_tokens=self.num_tokens,
140
+ ).to(self.device, dtype=self.torch_dtype)
141
+ return image_proj_model
142
+
143
+ def set_ip_adapter(self):
144
+ unet = self.pipe.unet
145
+ attn_procs = {}
146
+ for name in unet.attn_processors.keys():
147
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
148
+ if name.startswith("mid_block"):
149
+ hidden_size = unet.config.block_out_channels[-1]
150
+ elif name.startswith("up_blocks"):
151
+ block_id = int(name[len("up_blocks.")])
152
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
153
+ elif name.startswith("down_blocks"):
154
+ block_id = int(name[len("down_blocks.")])
155
+ hidden_size = unet.config.block_out_channels[block_id]
156
+ if cross_attention_dim is None:
157
+ attn_procs[name] = AttnProcessor()
158
+ else:
159
+ attn_procs[name] = IPAttnProcessor(
160
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens*self.n_cond,
161
+ ).to(self.device, dtype=self.torch_dtype)
162
+ unet.set_attn_processor(attn_procs)
163
+
164
+ def load_ip_adapter(self):
165
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
166
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
167
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
168
+ for key in f.keys():
169
+ if key.startswith("image_proj."):
170
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
171
+ elif key.startswith("ip_adapter."):
172
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
173
+ else:
174
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
175
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
176
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
177
+ ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
178
+
179
+ @torch.inference_mode()
180
+ def get_image_embeds(self, faceid_embeds):
181
+
182
+ multi_face = False
183
+ if faceid_embeds.dim() == 3:
184
+ multi_face = True
185
+ b, n, c = faceid_embeds.shape
186
+ faceid_embeds = faceid_embeds.reshape(b*n, c)
187
+
188
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
189
+ image_prompt_embeds = self.image_proj_model(faceid_embeds)
190
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
191
+ if multi_face:
192
+ c = image_prompt_embeds.size(-1)
193
+ image_prompt_embeds = image_prompt_embeds.reshape(b, -1, c)
194
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.reshape(b, -1, c)
195
+
196
+ return image_prompt_embeds, uncond_image_prompt_embeds
197
+
198
+ def set_scale(self, scale):
199
+ for attn_processor in self.pipe.unet.attn_processors.values():
200
+ if isinstance(attn_processor, IPAttnProcessor):
201
+ attn_processor.scale = scale
202
+
203
+ def generate(
204
+ self,
205
+ faceid_embeds=None,
206
+ prompt=None,
207
+ negative_prompt=None,
208
+ scale=1.0,
209
+ num_samples=4,
210
+ seed=None,
211
+ guidance_scale=7.5,
212
+ num_inference_steps=30,
213
+ **kwargs,
214
+ ):
215
+ self.set_scale(scale)
216
+
217
+
218
+ num_prompts = faceid_embeds.size(0)
219
+
220
+ if prompt is None:
221
+ prompt = "best quality, high quality"
222
+ if negative_prompt is None:
223
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
224
+
225
+ if not isinstance(prompt, List):
226
+ prompt = [prompt] * num_prompts
227
+ if not isinstance(negative_prompt, List):
228
+ negative_prompt = [negative_prompt] * num_prompts
229
+
230
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
231
+
232
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
233
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
234
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
235
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
236
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
237
+
238
+ with torch.inference_mode():
239
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
240
+ prompt,
241
+ device=self.device,
242
+ num_images_per_prompt=num_samples,
243
+ do_classifier_free_guidance=True,
244
+ negative_prompt=negative_prompt,
245
+ )
246
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
247
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
248
+
249
+ generator = get_generator(seed, self.device)
250
+
251
+ images = self.pipe(
252
+ prompt_embeds=prompt_embeds,
253
+ negative_prompt_embeds=negative_prompt_embeds,
254
+ guidance_scale=guidance_scale,
255
+ num_inference_steps=num_inference_steps,
256
+ generator=generator,
257
+ **kwargs,
258
+ ).images
259
+
260
+ return images
261
+
262
+
263
+ class IPAdapterFaceIDPlus:
264
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch.float16):
265
+ self.device = device
266
+ self.image_encoder_path = image_encoder_path
267
+ self.ip_ckpt = ip_ckpt
268
+ self.num_tokens = num_tokens
269
+ self.torch_dtype = torch_dtype
270
+
271
+ self.pipe = sd_pipe.to(self.device)
272
+ self.set_ip_adapter()
273
+
274
+ # load image encoder
275
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
276
+ self.device, dtype=self.torch_dtype
277
+ )
278
+ self.clip_image_processor = CLIPImageProcessor()
279
+ # image proj model
280
+ self.image_proj_model = self.init_proj()
281
+
282
+ self.load_ip_adapter()
283
+
284
+ def init_proj(self):
285
+ image_proj_model = ProjPlusModel(
286
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
287
+ id_embeddings_dim=512,
288
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
289
+ num_tokens=self.num_tokens,
290
+ ).to(self.device, dtype=self.torch_dtype)
291
+ return image_proj_model
292
+
293
+ def set_ip_adapter(self):
294
+ unet = self.pipe.unet
295
+ attn_procs = {}
296
+ for name in unet.attn_processors.keys():
297
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
298
+ if name.startswith("mid_block"):
299
+ hidden_size = unet.config.block_out_channels[-1]
300
+ elif name.startswith("up_blocks"):
301
+ block_id = int(name[len("up_blocks.")])
302
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
303
+ elif name.startswith("down_blocks"):
304
+ block_id = int(name[len("down_blocks.")])
305
+ hidden_size = unet.config.block_out_channels[block_id]
306
+ if cross_attention_dim is None:
307
+ attn_procs[name] = AttnProcessor()
308
+ else:
309
+ attn_procs[name] = IPAttnProcessor(
310
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens,
311
+ ).to(self.device, dtype=self.torch_dtype)
312
+ unet.set_attn_processor(attn_procs)
313
+
314
+ def load_ip_adapter(self):
315
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
316
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
317
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
318
+ for key in f.keys():
319
+ if key.startswith("image_proj."):
320
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
321
+ elif key.startswith("ip_adapter."):
322
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
323
+ else:
324
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
325
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
326
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
327
+ ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
328
+
329
+ @torch.inference_mode()
330
+ def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut):
331
+ if isinstance(face_image, Image.Image):
332
+ pil_image = [face_image]
333
+ clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
334
+ clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
335
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
336
+ uncond_clip_image_embeds = self.image_encoder(
337
+ torch.zeros_like(clip_image), output_hidden_states=True
338
+ ).hidden_states[-2]
339
+
340
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
341
+ image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
342
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
343
+ return image_prompt_embeds, uncond_image_prompt_embeds
344
+
345
+ def set_scale(self, scale):
346
+ for attn_processor in self.pipe.unet.attn_processors.values():
347
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
348
+ attn_processor.scale = scale
349
+
350
+ def generate(
351
+ self,
352
+ face_image=None,
353
+ faceid_embeds=None,
354
+ prompt=None,
355
+ negative_prompt=None,
356
+ scale=1.0,
357
+ num_samples=4,
358
+ seed=None,
359
+ guidance_scale=7.5,
360
+ num_inference_steps=30,
361
+ s_scale=1.0,
362
+ shortcut=False,
363
+ **kwargs,
364
+ ):
365
+ self.set_scale(scale)
366
+
367
+
368
+ num_prompts = faceid_embeds.size(0)
369
+
370
+ if prompt is None:
371
+ prompt = "best quality, high quality"
372
+ if negative_prompt is None:
373
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
374
+
375
+ if not isinstance(prompt, List):
376
+ prompt = [prompt] * num_prompts
377
+ if not isinstance(negative_prompt, List):
378
+ negative_prompt = [negative_prompt] * num_prompts
379
+
380
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
381
+
382
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
383
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
384
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
385
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
386
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
387
+
388
+ with torch.inference_mode():
389
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
390
+ prompt,
391
+ device=self.device,
392
+ num_images_per_prompt=num_samples,
393
+ do_classifier_free_guidance=True,
394
+ negative_prompt=negative_prompt,
395
+ )
396
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
397
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
398
+
399
+ generator = get_generator(seed, self.device)
400
+
401
+ images = self.pipe(
402
+ prompt_embeds=prompt_embeds,
403
+ negative_prompt_embeds=negative_prompt_embeds,
404
+ guidance_scale=guidance_scale,
405
+ num_inference_steps=num_inference_steps,
406
+ generator=generator,
407
+ **kwargs,
408
+ ).images
409
+
410
+ return images
411
+
412
+
413
+ class IPAdapterFaceIDXL(IPAdapterFaceID):
414
+ """SDXL"""
415
+
416
+ def generate(
417
+ self,
418
+ faceid_embeds=None,
419
+ prompt=None,
420
+ negative_prompt=None,
421
+ scale=1.0,
422
+ num_samples=4,
423
+ seed=None,
424
+ num_inference_steps=30,
425
+ **kwargs,
426
+ ):
427
+ self.set_scale(scale)
428
+
429
+ num_prompts = faceid_embeds.size(0)
430
+
431
+ if prompt is None:
432
+ prompt = "best quality, high quality"
433
+ if negative_prompt is None:
434
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
435
+
436
+ if not isinstance(prompt, List):
437
+ prompt = [prompt] * num_prompts
438
+ if not isinstance(negative_prompt, List):
439
+ negative_prompt = [negative_prompt] * num_prompts
440
+
441
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
442
+
443
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
444
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
445
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
446
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
447
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
448
+
449
+ with torch.inference_mode():
450
+ (
451
+ prompt_embeds,
452
+ negative_prompt_embeds,
453
+ pooled_prompt_embeds,
454
+ negative_pooled_prompt_embeds,
455
+ ) = self.pipe.encode_prompt(
456
+ prompt,
457
+ num_images_per_prompt=num_samples,
458
+ do_classifier_free_guidance=True,
459
+ negative_prompt=negative_prompt,
460
+ )
461
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
462
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
463
+
464
+ generator = get_generator(seed, self.device)
465
+
466
+ images = self.pipe(
467
+ prompt_embeds=prompt_embeds,
468
+ negative_prompt_embeds=negative_prompt_embeds,
469
+ pooled_prompt_embeds=pooled_prompt_embeds,
470
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
471
+ num_inference_steps=num_inference_steps,
472
+ generator=generator,
473
+ **kwargs,
474
+ ).images
475
+
476
+ return images
477
+
478
+
479
+ class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus):
480
+ """SDXL"""
481
+
482
+ def generate(
483
+ self,
484
+ face_image=None,
485
+ faceid_embeds=None,
486
+ prompt=None,
487
+ negative_prompt=None,
488
+ scale=1.0,
489
+ num_samples=4,
490
+ seed=None,
491
+ guidance_scale=7.5,
492
+ num_inference_steps=30,
493
+ s_scale=1.0,
494
+ shortcut=True,
495
+ **kwargs,
496
+ ):
497
+ self.set_scale(scale)
498
+
499
+ num_prompts = faceid_embeds.size(0)
500
+
501
+ if prompt is None:
502
+ prompt = "best quality, high quality"
503
+ if negative_prompt is None:
504
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
505
+
506
+ if not isinstance(prompt, List):
507
+ prompt = [prompt] * num_prompts
508
+ if not isinstance(negative_prompt, List):
509
+ negative_prompt = [negative_prompt] * num_prompts
510
+
511
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
512
+
513
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
514
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
515
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
516
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
517
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
518
+
519
+ with torch.inference_mode():
520
+ (
521
+ prompt_embeds,
522
+ negative_prompt_embeds,
523
+ pooled_prompt_embeds,
524
+ negative_pooled_prompt_embeds,
525
+ ) = self.pipe.encode_prompt(
526
+ prompt,
527
+ num_images_per_prompt=num_samples,
528
+ do_classifier_free_guidance=True,
529
+ negative_prompt=negative_prompt,
530
+ )
531
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
532
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
533
+
534
+ generator = get_generator(seed, self.device)
535
+
536
+ images = self.pipe(
537
+ prompt_embeds=prompt_embeds,
538
+ negative_prompt_embeds=negative_prompt_embeds,
539
+ pooled_prompt_embeds=pooled_prompt_embeds,
540
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
541
+ num_inference_steps=num_inference_steps,
542
+ generator=generator,
543
+ guidance_scale=guidance_scale,
544
+ **kwargs,
545
+ ).images
546
+
547
+ return images
ip_adapter/resampler.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2
+ # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3
+
4
+ import math
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange
9
+ from einops.layers.torch import Rearrange
10
+
11
+
12
+ # FFN
13
+ def FeedForward(dim, mult=4):
14
+ inner_dim = int(dim * mult)
15
+ return nn.Sequential(
16
+ nn.LayerNorm(dim),
17
+ nn.Linear(dim, inner_dim, bias=False),
18
+ nn.GELU(),
19
+ nn.Linear(inner_dim, dim, bias=False),
20
+ )
21
+
22
+
23
+ def reshape_tensor(x, heads):
24
+ bs, length, width = x.shape
25
+ # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
26
+ x = x.view(bs, length, heads, -1)
27
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
28
+ x = x.transpose(1, 2)
29
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
30
+ x = x.reshape(bs, heads, length, -1)
31
+ return x
32
+
33
+
34
+ class PerceiverAttention(nn.Module):
35
+ def __init__(self, *, dim, dim_head=64, heads=8):
36
+ super().__init__()
37
+ self.scale = dim_head**-0.5
38
+ self.dim_head = dim_head
39
+ self.heads = heads
40
+ inner_dim = dim_head * heads
41
+
42
+ self.norm1 = nn.LayerNorm(dim)
43
+ self.norm2 = nn.LayerNorm(dim)
44
+
45
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
46
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
47
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
48
+
49
+ def forward(self, x, latents):
50
+ """
51
+ Args:
52
+ x (torch.Tensor): image features
53
+ shape (b, n1, D)
54
+ latent (torch.Tensor): latent features
55
+ shape (b, n2, D)
56
+ """
57
+ x = self.norm1(x)
58
+ latents = self.norm2(latents)
59
+
60
+ b, l, _ = latents.shape
61
+
62
+ q = self.to_q(latents)
63
+ kv_input = torch.cat((x, latents), dim=-2)
64
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
65
+
66
+ q = reshape_tensor(q, self.heads)
67
+ k = reshape_tensor(k, self.heads)
68
+ v = reshape_tensor(v, self.heads)
69
+
70
+ # attention
71
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
72
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
73
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
74
+ out = weight @ v
75
+
76
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
77
+
78
+ return self.to_out(out)
79
+
80
+
81
+ class Resampler(nn.Module):
82
+ def __init__(
83
+ self,
84
+ dim=1024,
85
+ depth=8,
86
+ dim_head=64,
87
+ heads=16,
88
+ num_queries=8,
89
+ embedding_dim=768,
90
+ output_dim=1024,
91
+ ff_mult=4,
92
+ max_seq_len: int = 257, # CLIP tokens + CLS token
93
+ apply_pos_emb: bool = False,
94
+ num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
95
+ ):
96
+ super().__init__()
97
+ self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
98
+
99
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
100
+
101
+ self.proj_in = nn.Linear(embedding_dim, dim)
102
+
103
+ self.proj_out = nn.Linear(dim, output_dim)
104
+ self.norm_out = nn.LayerNorm(output_dim)
105
+
106
+ self.to_latents_from_mean_pooled_seq = (
107
+ nn.Sequential(
108
+ nn.LayerNorm(dim),
109
+ nn.Linear(dim, dim * num_latents_mean_pooled),
110
+ Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
111
+ )
112
+ if num_latents_mean_pooled > 0
113
+ else None
114
+ )
115
+
116
+ self.layers = nn.ModuleList([])
117
+ for _ in range(depth):
118
+ self.layers.append(
119
+ nn.ModuleList(
120
+ [
121
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
122
+ FeedForward(dim=dim, mult=ff_mult),
123
+ ]
124
+ )
125
+ )
126
+
127
+ def forward(self, x):
128
+ if self.pos_emb is not None:
129
+ n, device = x.shape[1], x.device
130
+ pos_emb = self.pos_emb(torch.arange(n, device=device))
131
+ x = x + pos_emb
132
+
133
+ latents = self.latents.repeat(x.size(0), 1, 1)
134
+
135
+ x = self.proj_in(x)
136
+
137
+ if self.to_latents_from_mean_pooled_seq:
138
+ meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
139
+ meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
140
+ latents = torch.cat((meanpooled_latents, latents), dim=-2)
141
+
142
+ for attn, ff in self.layers:
143
+ latents = attn(x, latents) + latents
144
+ latents = ff(latents) + latents
145
+
146
+ latents = self.proj_out(latents)
147
+ return self.norm_out(latents)
148
+
149
+
150
+ def masked_mean(t, *, dim, mask=None):
151
+ if mask is None:
152
+ return t.mean(dim=dim)
153
+
154
+ denom = mask.sum(dim=dim, keepdim=True)
155
+ mask = rearrange(mask, "b n -> b n 1")
156
+ masked_t = t.masked_fill(~mask, 0.0)
157
+
158
+ return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
ip_adapter/test_resampler.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from resampler import Resampler
3
+ from transformers import CLIPVisionModel
4
+
5
+ BATCH_SIZE = 2
6
+ OUTPUT_DIM = 1280
7
+ NUM_QUERIES = 8
8
+ NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
9
+ APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
10
+ IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
11
+
12
+
13
+ def main():
14
+ image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
15
+ embedding_dim = image_encoder.config.hidden_size
16
+ print(f"image_encoder hidden size: ", embedding_dim)
17
+
18
+ image_proj_model = Resampler(
19
+ dim=1024,
20
+ depth=2,
21
+ dim_head=64,
22
+ heads=16,
23
+ num_queries=NUM_QUERIES,
24
+ embedding_dim=embedding_dim,
25
+ output_dim=OUTPUT_DIM,
26
+ ff_mult=2,
27
+ max_seq_len=257,
28
+ apply_pos_emb=APPLY_POS_EMB,
29
+ num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
30
+ )
31
+
32
+ dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
33
+ with torch.no_grad():
34
+ image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
35
+ print("image_embds shape: ", image_embeds.shape)
36
+
37
+ with torch.no_grad():
38
+ ip_tokens = image_proj_model(image_embeds)
39
+ print("ip_tokens shape:", ip_tokens.shape)
40
+ assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
41
+
42
+
43
+ if __name__ == "__main__":
44
+ main()
ip_adapter/utils.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ attn_maps = {}
7
+ def hook_fn(name):
8
+ def forward_hook(module, input, output):
9
+ if hasattr(module.processor, "attn_map"):
10
+ attn_maps[name] = module.processor.attn_map
11
+ del module.processor.attn_map
12
+
13
+ return forward_hook
14
+
15
+ def register_cross_attention_hook(unet):
16
+ for name, module in unet.named_modules():
17
+ if name.split('.')[-1].startswith('attn2'):
18
+ module.register_forward_hook(hook_fn(name))
19
+
20
+ return unet
21
+
22
+ def upscale(attn_map, target_size):
23
+ attn_map = torch.mean(attn_map, dim=0)
24
+ attn_map = attn_map.permute(1,0)
25
+ temp_size = None
26
+
27
+ for i in range(0,5):
28
+ scale = 2 ** i
29
+ if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
30
+ temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
31
+ break
32
+
33
+ assert temp_size is not None, "temp_size cannot is None"
34
+
35
+ attn_map = attn_map.view(attn_map.shape[0], *temp_size)
36
+
37
+ attn_map = F.interpolate(
38
+ attn_map.unsqueeze(0).to(dtype=torch.float32),
39
+ size=target_size,
40
+ mode='bilinear',
41
+ align_corners=False
42
+ )[0]
43
+
44
+ attn_map = torch.softmax(attn_map, dim=0)
45
+ return attn_map
46
+ def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
47
+
48
+ idx = 0 if instance_or_negative else 1
49
+ net_attn_maps = []
50
+
51
+ for name, attn_map in attn_maps.items():
52
+ attn_map = attn_map.cpu() if detach else attn_map
53
+ attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
54
+ attn_map = upscale(attn_map, image_size)
55
+ net_attn_maps.append(attn_map)
56
+
57
+ net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
58
+
59
+ return net_attn_maps
60
+
61
+ def attnmaps2images(net_attn_maps):
62
+
63
+ #total_attn_scores = 0
64
+ images = []
65
+
66
+ for attn_map in net_attn_maps:
67
+ attn_map = attn_map.cpu().numpy()
68
+ #total_attn_scores += attn_map.mean().item()
69
+
70
+ normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
71
+ normalized_attn_map = normalized_attn_map.astype(np.uint8)
72
+ #print("norm: ", normalized_attn_map.shape)
73
+ image = Image.fromarray(normalized_attn_map)
74
+
75
+ #image = fix_save_attn_map(attn_map)
76
+ images.append(image)
77
+
78
+ #print(total_attn_scores)
79
+ return images
80
+ def is_torch2_available():
81
+ return hasattr(F, "scaled_dot_product_attention")
82
+
83
+ def get_generator(seed, device):
84
+
85
+ if seed is not None:
86
+ if isinstance(seed, list):
87
+ generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
88
+ else:
89
+ generator = torch.Generator(device).manual_seed(seed)
90
+ else:
91
+ generator = None
92
+
93
+ return generator