Spaces:
Running
on
Zero
Running
on
Zero
std::vector<at::Tensor> mean_var(at::Tensor x) { | |
if (x.is_cuda()) { | |
if (x.type().scalarType() == at::ScalarType::Half) { | |
return mean_var_cuda_h(x); | |
} else { | |
return mean_var_cuda(x); | |
} | |
} else { | |
return mean_var_cpu(x); | |
} | |
} | |
at::Tensor forward(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps) { | |
if (x.is_cuda()) { | |
if (x.type().scalarType() == at::ScalarType::Half) { | |
return forward_cuda_h(x, mean, var, weight, bias, affine, eps); | |
} else { | |
return forward_cuda(x, mean, var, weight, bias, affine, eps); | |
} | |
} else { | |
return forward_cpu(x, mean, var, weight, bias, affine, eps); | |
} | |
} | |
std::vector<at::Tensor> edz_eydz(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps) { | |
if (z.is_cuda()) { | |
if (z.type().scalarType() == at::ScalarType::Half) { | |
return edz_eydz_cuda_h(z, dz, weight, bias, affine, eps); | |
} else { | |
return edz_eydz_cuda(z, dz, weight, bias, affine, eps); | |
} | |
} else { | |
return edz_eydz_cpu(z, dz, weight, bias, affine, eps); | |
} | |
} | |
at::Tensor backward(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
at::Tensor edz, at::Tensor eydz, bool affine, float eps) { | |
if (z.is_cuda()) { | |
if (z.type().scalarType() == at::ScalarType::Half) { | |
return backward_cuda_h(z, dz, var, weight, bias, edz, eydz, affine, eps); | |
} else { | |
return backward_cuda(z, dz, var, weight, bias, edz, eydz, affine, eps); | |
} | |
} else { | |
return backward_cpu(z, dz, var, weight, bias, edz, eydz, affine, eps); | |
} | |
} | |
void leaky_relu_forward(at::Tensor z, float slope) { | |
at::leaky_relu_(z, slope); | |
} | |
void leaky_relu_backward(at::Tensor z, at::Tensor dz, float slope) { | |
if (z.is_cuda()) { | |
if (z.type().scalarType() == at::ScalarType::Half) { | |
return leaky_relu_backward_cuda_h(z, dz, slope); | |
} else { | |
return leaky_relu_backward_cuda(z, dz, slope); | |
} | |
} else { | |
return leaky_relu_backward_cpu(z, dz, slope); | |
} | |
} | |
void elu_forward(at::Tensor z) { | |
at::elu_(z); | |
} | |
void elu_backward(at::Tensor z, at::Tensor dz) { | |
if (z.is_cuda()) { | |
return elu_backward_cuda(z, dz); | |
} else { | |
return elu_backward_cpu(z, dz); | |
} | |
} | |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | |
m.def("mean_var", &mean_var, "Mean and variance computation"); | |
m.def("forward", &forward, "In-place forward computation"); | |
m.def("edz_eydz", &edz_eydz, "First part of backward computation"); | |
m.def("backward", &backward, "Second part of backward computation"); | |
m.def("leaky_relu_forward", &leaky_relu_forward, "Leaky relu forward computation"); | |
m.def("leaky_relu_backward", &leaky_relu_backward, "Leaky relu backward computation and inversion"); | |
m.def("elu_forward", &elu_forward, "Elu forward computation"); | |
m.def("elu_backward", &elu_backward, "Elu backward computation and inversion"); | |
} | |