Spaces:
Paused
Paused
import gradio as gr | |
import os | |
from pathlib import Path | |
import sys | |
import torch | |
from PIL import Image, ImageOps | |
from utils_ootd import get_mask_location | |
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() | |
sys.path.insert(0, str(PROJECT_ROOT)) | |
from preprocess.openpose.run_openpose import OpenPose | |
from preprocess.humanparsing.run_parsing import Parsing | |
from ootd.inference_ootd_hd import OOTDiffusionHD | |
from ootd.inference_ootd_dc import OOTDiffusionDC | |
openpose_model_hd = OpenPose(0) | |
parsing_model_hd = Parsing(0) | |
ootd_model_hd = OOTDiffusionHD(0) | |
openpose_model_dc = OpenPose(1) | |
parsing_model_dc = Parsing(1) | |
ootd_model_dc = OOTDiffusionDC(1) | |
category_dict = ['upperbody', 'lowerbody', 'dress'] | |
category_dict_utils = ['upper_body', 'lower_body', 'dresses'] | |
example_path = os.path.join(os.path.dirname(__file__), 'examples') | |
model_hd = os.path.join(example_path, 'model/model_1.png') | |
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg') | |
model_dc = os.path.join(example_path, 'model/model_8.png') | |
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg') | |
import spaces | |
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed): | |
model_type = 'hd' | |
category = 0 # 0:upperbody; 1:lowerbody; 2:dress | |
with torch.no_grad(): | |
openpose_model_hd.preprocessor.body_estimation.model.to('cuda') | |
ootd_model_hd.pipe.to('cuda') | |
ootd_model_hd.image_encoder.to('cuda') | |
ootd_model_hd.text_encoder.to('cuda') | |
garm_img = Image.open(garm_img).resize((768, 1024)) | |
vton_img = Image.open(vton_img).resize((768, 1024)) | |
keypoints = openpose_model_hd(vton_img.resize((384, 512))) | |
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512))) | |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) | |
mask = mask.resize((768, 1024), Image.NEAREST) | |
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST) | |
masked_vton_img = Image.composite(mask_gray, vton_img, mask) | |
images = ootd_model_hd( | |
model_type=model_type, | |
category=category_dict[category], | |
image_garm=garm_img, | |
image_vton=masked_vton_img, | |
mask=mask, | |
image_ori=vton_img, | |
num_samples=n_samples, | |
num_steps=n_steps, | |
image_scale=image_scale, | |
seed=seed, | |
) | |
return images | |
def process_dc(vton_img, garm_img, category, n_samples, n_steps, image_scale, seed): | |
model_type = 'dc' | |
if category == 'Upper-body': | |
category = 0 | |
elif category == 'Lower-body': | |
category = 1 | |
else: | |
category =2 | |
with torch.no_grad(): | |
openpose_model_dc.preprocessor.body_estimation.model.to('cuda') | |
ootd_model_dc.pipe.to('cuda') | |
ootd_model_dc.image_encoder.to('cuda') | |
ootd_model_dc.text_encoder.to('cuda') | |
garm_img = Image.open(garm_img).resize((768, 1024)) | |
vton_img = Image.open(vton_img).resize((768, 1024)) | |
keypoints = openpose_model_dc(vton_img.resize((384, 512))) | |
model_parse, _ = parsing_model_dc(vton_img.resize((384, 512))) | |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) | |
mask = mask.resize((768, 1024), Image.NEAREST) | |
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST) | |
masked_vton_img = Image.composite(mask_gray, vton_img, mask) | |
images = ootd_model_dc( | |
model_type=model_type, | |
category=category_dict[category], | |
image_garm=garm_img, | |
image_vton=masked_vton_img, | |
mask=mask, | |
image_ori=vton_img, | |
num_samples=n_samples, | |
num_steps=n_steps, | |
image_scale=image_scale, | |
seed=seed, | |
) | |
return images | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("# OOTDiffusion Demo") | |
with gr.Row(): | |
gr.Markdown("## Half-body") | |
with gr.Row(): | |
gr.Markdown("***Support upper-body garments***") | |
with gr.Row(): | |
with gr.Column(): | |
vton_img = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_hd) | |
example = gr.Examples( | |
inputs=vton_img, | |
examples_per_page=14, | |
examples=[ | |
os.path.join(example_path, 'model/model_1.png'), | |
os.path.join(example_path, 'model/model_2.png'), | |
os.path.join(example_path, 'model/model_3.png'), | |
os.path.join(example_path, 'model/model_4.png'), | |
os.path.join(example_path, 'model/model_5.png'), | |
os.path.join(example_path, 'model/model_6.png'), | |
os.path.join(example_path, 'model/model_7.png'), | |
os.path.join(example_path, 'model/01008_00.jpg'), | |
os.path.join(example_path, 'model/07966_00.jpg'), | |
os.path.join(example_path, 'model/05997_00.jpg'), | |
os.path.join(example_path, 'model/02849_00.jpg'), | |
os.path.join(example_path, 'model/14627_00.jpg'), | |
os.path.join(example_path, 'model/09597_00.jpg'), | |
os.path.join(example_path, 'model/01861_00.jpg'), | |
]) | |
with gr.Column(): | |
garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_hd) | |
example = gr.Examples( | |
inputs=garm_img, | |
examples_per_page=14, | |
examples=[ | |
os.path.join(example_path, 'garment/03244_00.jpg'), | |
os.path.join(example_path, 'garment/00126_00.jpg'), | |
os.path.join(example_path, 'garment/03032_00.jpg'), | |
os.path.join(example_path, 'garment/06123_00.jpg'), | |
os.path.join(example_path, 'garment/02305_00.jpg'), | |
os.path.join(example_path, 'garment/00055_00.jpg'), | |
os.path.join(example_path, 'garment/00470_00.jpg'), | |
os.path.join(example_path, 'garment/02015_00.jpg'), | |
os.path.join(example_path, 'garment/10297_00.jpg'), | |
os.path.join(example_path, 'garment/07382_00.jpg'), | |
os.path.join(example_path, 'garment/07764_00.jpg'), | |
os.path.join(example_path, 'garment/00151_00.jpg'), | |
os.path.join(example_path, 'garment/12562_00.jpg'), | |
os.path.join(example_path, 'garment/04825_00.jpg'), | |
]) | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1) | |
with gr.Column(): | |
run_button = gr.Button(value="Run") | |
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) | |
n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1) | |
# scale = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1) | |
image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) | |
ips = [vton_img, garm_img, n_samples, n_steps, image_scale, seed] | |
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery]) | |
with gr.Row(): | |
gr.Markdown("## Full-body") | |
with gr.Row(): | |
gr.Markdown("***Support upper-body/lower-body/dresses; garment category must be paired!!!***") | |
with gr.Row(): | |
with gr.Column(): | |
vton_img_dc = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_dc) | |
example = gr.Examples( | |
label="Examples (upper-body/lower-body)", | |
inputs=vton_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'model/model_8.png'), | |
os.path.join(example_path, 'model/049447_0.jpg'), | |
os.path.join(example_path, 'model/049713_0.jpg'), | |
os.path.join(example_path, 'model/051482_0.jpg'), | |
os.path.join(example_path, 'model/051918_0.jpg'), | |
os.path.join(example_path, 'model/051962_0.jpg'), | |
os.path.join(example_path, 'model/049205_0.jpg'), | |
]) | |
example = gr.Examples( | |
label="Examples (dress)", | |
inputs=vton_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'model/model_9.png'), | |
os.path.join(example_path, 'model/052767_0.jpg'), | |
os.path.join(example_path, 'model/052472_0.jpg'), | |
os.path.join(example_path, 'model/053514_0.jpg'), | |
os.path.join(example_path, 'model/053228_0.jpg'), | |
os.path.join(example_path, 'model/052964_0.jpg'), | |
os.path.join(example_path, 'model/053700_0.jpg'), | |
]) | |
with gr.Column(): | |
garm_img_dc = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_dc) | |
category_dc = gr.Dropdown(label="Garment category (important option!!!)", choices=["Upper-body", "Lower-body", "Dress"], value="Upper-body") | |
example = gr.Examples( | |
label="Examples (upper-body)", | |
inputs=garm_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'garment/048554_1.jpg'), | |
os.path.join(example_path, 'garment/049920_1.jpg'), | |
os.path.join(example_path, 'garment/049965_1.jpg'), | |
os.path.join(example_path, 'garment/049949_1.jpg'), | |
os.path.join(example_path, 'garment/050181_1.jpg'), | |
os.path.join(example_path, 'garment/049805_1.jpg'), | |
os.path.join(example_path, 'garment/050105_1.jpg'), | |
]) | |
example = gr.Examples( | |
label="Examples (lower-body)", | |
inputs=garm_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'garment/051827_1.jpg'), | |
os.path.join(example_path, 'garment/051946_1.jpg'), | |
os.path.join(example_path, 'garment/051473_1.jpg'), | |
os.path.join(example_path, 'garment/051515_1.jpg'), | |
os.path.join(example_path, 'garment/051517_1.jpg'), | |
os.path.join(example_path, 'garment/051988_1.jpg'), | |
os.path.join(example_path, 'garment/051412_1.jpg'), | |
]) | |
example = gr.Examples( | |
label="Examples (dress)", | |
inputs=garm_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'garment/053290_1.jpg'), | |
os.path.join(example_path, 'garment/053744_1.jpg'), | |
os.path.join(example_path, 'garment/053742_1.jpg'), | |
os.path.join(example_path, 'garment/053786_1.jpg'), | |
os.path.join(example_path, 'garment/053790_1.jpg'), | |
os.path.join(example_path, 'garment/053319_1.jpg'), | |
os.path.join(example_path, 'garment/052234_1.jpg'), | |
]) | |
with gr.Column(): | |
result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1) | |
with gr.Column(): | |
run_button_dc = gr.Button(value="Run") | |
n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) | |
n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1) | |
# scale_dc = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1) | |
image_scale_dc = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1) | |
seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) | |
ips_dc = [vton_img_dc, garm_img_dc, category_dc, n_samples_dc, n_steps_dc, image_scale_dc, seed_dc] | |
run_button_dc.click(fn=process_dc, inputs=ips_dc, outputs=[result_gallery_dc]) | |
block.launch() | |