ljsabc's picture
Initial commit.
395d300
raw
history blame
14.9 kB
import torch
import numpy as np
from tqdm import tqdm
from omegaconf import OmegaConf
import safetensors
import os
import einops
import cv2
from PIL import Image, ImageFilter, ImageOps
from utils.io_utils import resize_pad2divisior
import os
from utils.io_utils import submit_request, img2b64
import json
# Debug by Francis
# from ldm.util import instantiate_from_config
# from ldm.models.diffusion.ddpm import LatentDiffusion
# from ldm.models.diffusion.ddim import DDIMSampler
# from ldm.modules.diffusionmodules.util import noise_like
import io
import base64
from requests.auth import HTTPBasicAuth
# Debug by Francis
# def create_model(config_path):
# config = OmegaConf.load(config_path)
# model = instantiate_from_config(config.model).cpu()
# return model
#
# def get_state_dict(d):
# return d.get('state_dict', d)
#
# def load_state_dict(ckpt_path, location='cpu'):
# _, extension = os.path.splitext(ckpt_path)
# if extension.lower() == ".safetensors":
# import safetensors.torch
# state_dict = safetensors.torch.load_file(ckpt_path, device=location)
# else:
# state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
# state_dict = get_state_dict(state_dict)
# return state_dict
#
#
# def load_ldm_sd(model, path) :
# if path.endswith('.safetensor') :
# sd = safetensors.torch.load_file(path)
# else :
# sd = load_state_dict(path)
# model.load_state_dict(sd, strict = False)
#
# def fill_mask_input(image, mask):
# """fills masked regions with colors from image using blur. Not extremely effective."""
#
# image_mod = Image.new('RGBA', (image.width, image.height))
#
# image_masked = Image.new('RGBa', (image.width, image.height))
# image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
#
# image_masked = image_masked.convert('RGBa')
#
# for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
# blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
# for _ in range(repeats):
# image_mod.alpha_composite(blurred)
#
# return image_mod.convert("RGB")
#
#
# def get_inpainting_image_condition(model, image, mask) :
# conditioning_mask = np.array(mask.convert("L"))
# conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
# conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
# conditioning_mask = torch.round(conditioning_mask)
# conditioning_mask = conditioning_mask.to(device=image.device, dtype=image.dtype)
# conditioning_image = torch.lerp(
# image,
# image * (1.0 - conditioning_mask),
# 1
# )
# conditioning_image = model.get_first_stage_encoding(model.encode_first_stage(conditioning_image))
# conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=conditioning_image.shape[-2:])
# conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
# image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
# return image_conditioning
#
#
# class GuidedLDM(LatentDiffusion):
# def __init__(self, *args, **kwargs):
# super().__init__(*args, **kwargs)
#
# @torch.no_grad()
# def img2img_inpaint(
# self,
# image: Image.Image,
# c_text: str,
# uc_text: str,
# mask: Image.Image,
# ddim_steps = 50,
# mask_blur: int = 0,
# use_cuda: bool = True,
# **kwargs) -> Image.Image :
# ddim_sampler = GuidedDDIMSample(self)
# if use_cuda :
# self.cond_stage_model.cuda()
# self.first_stage_model.cuda()
# c_text = self.get_learned_conditioning([c_text])
# uc_text = self.get_learned_conditioning([uc_text])
# cond = {"c_crossattn": [c_text]}
# uc_cond = {"c_crossattn": [uc_text]}
#
# if use_cuda :
# device = torch.device('cuda:0')
# else :
# device = torch.device('cpu')
#
# image_mask = mask
# image_mask = image_mask.convert('L')
# image_mask = image_mask.filter(ImageFilter.GaussianBlur(mask_blur))
# latent_mask = image_mask
# # image = fill_mask_input(image, latent_mask)
# # image.save('image_fill.png')
# image = np.array(image).astype(np.float32) / 127.5 - 1.0
# image = np.moveaxis(image, 2, 0)
# image = torch.from_numpy(image).to(device)[None]
# init_latent = self.get_first_stage_encoding(self.encode_first_stage(image))
# init_mask = latent_mask
# latmask = init_mask.convert('RGB').resize((init_latent.shape[3], init_latent.shape[2]))
# latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
# latmask = latmask[0]
# latmask = np.around(latmask)
# latmask = np.tile(latmask[None], (4, 1, 1))
# nmask = torch.asarray(latmask).to(init_latent.device).float()
# init_latent = (1 - nmask) * init_latent + nmask * torch.randn_like(init_latent)
#
# denoising_strength = 1
# if self.model.conditioning_key == 'hybrid' :
# image_cdt = get_inpainting_image_condition(self, image, image_mask)
# cond["c_concat"] = [image_cdt]
# uc_cond["c_concat"] = [image_cdt]
#
# steps = ddim_steps
# t_enc = int(min(denoising_strength, 0.999) * steps)
# eta = 0
#
# noise = torch.randn_like(init_latent)
# ddim_sampler.make_schedule(ddim_num_steps=steps, ddim_eta=eta, ddim_discretize="uniform", verbose=False)
# x1 = ddim_sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * int(init_latent.shape[0])).to(device), noise=noise)
#
# if use_cuda :
# self.cond_stage_model.cpu()
# self.first_stage_model.cpu()
#
# if use_cuda :
# self.model.cuda()
# decoded = ddim_sampler.decode(x1, cond,t_enc,init_latent=init_latent,nmask=nmask,unconditional_guidance_scale=7,unconditional_conditioning=uc_cond)
# if use_cuda :
# self.model.cpu()
#
# if mask is not None :
# decoded = init_latent * (1 - nmask) + decoded * nmask
#
# if use_cuda :
# self.first_stage_model.cuda()
# with torch.cuda.amp.autocast(enabled=False):
# x_samples = self.decode_first_stage(decoded.to(torch.float32))
# if use_cuda :
# self.first_stage_model.cpu()
# return torch.clip(x_samples, -1, 1)
#
#
#
# class GuidedDDIMSample(DDIMSampler) :
# def __init__(self, *args, **kwargs):
# super().__init__(*args, **kwargs)
#
# @torch.no_grad()
# def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
# temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
# unconditional_guidance_scale=1., unconditional_conditioning=None,
# dynamic_threshold=None):
# b, *_, device = *x.shape, x.device
#
# if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
# model_output = self.model.apply_model(x, t, c)
# else:
# x_in = torch.cat([x] * 2)
# t_in = torch.cat([t] * 2)
# if isinstance(c, dict):
# assert isinstance(unconditional_conditioning, dict)
# c_in = dict()
# for k in c:
# if isinstance(c[k], list):
# c_in[k] = [torch.cat([
# unconditional_conditioning[k][i],
# c[k][i]]) for i in range(len(c[k]))]
# else:
# c_in[k] = torch.cat([
# unconditional_conditioning[k],
# c[k]])
# elif isinstance(c, list):
# c_in = list()
# assert isinstance(unconditional_conditioning, list)
# for i in range(len(c)):
# c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
# else:
# c_in = torch.cat([unconditional_conditioning, c])
# model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
# model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
#
# e_t = model_output
#
# alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
# alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
# sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
# sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
# # select parameters corresponding to the currently considered timestep
# a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
# a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
# sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
# sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
#
# # current prediction for x_0
# pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
#
# # direction pointing to x_t
# dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
# noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
# if noise_dropout > 0.:
# noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
# return x_prev, pred_x0
#
# @torch.no_grad()
# def decode(self, x_latent, cond, t_start, init_latent=None, nmask=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
# use_original_steps=False, callback=None):
#
# timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
# total_steps = len(timesteps)
# timesteps = timesteps[:t_start]
#
# time_range = np.flip(timesteps)
# total_steps = timesteps.shape[0]
# print(f"Running Guided DDIM Sampling with {len(timesteps)} timesteps, t_start={t_start}")
# iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
# x_dec = x_latent
# for i, step in enumerate(iterator):
# p = (i + (total_steps - t_start) + 1) / (total_steps)
# index = total_steps - i - 1
# ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
# if nmask is not None :
# noised_input = self.model.q_sample(init_latent.to(x_latent.device), ts.to(x_latent.device))
# x_dec = (1 - nmask) * noised_input + nmask * x_dec
# x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
# unconditional_guidance_scale=unconditional_guidance_scale,
# unconditional_conditioning=unconditional_conditioning)
# if callback: callback(i)
# return x_dec
#
#
# def ldm_inpaint(model, img, mask, inpaint_size=720, pos_prompt='', neg_prompt = '', use_cuda=True):
# img_original = np.copy(img)
# im_h, im_w = img.shape[:2]
# img_resized, (pad_h, pad_w) = resize_pad2divisior(img, inpaint_size)
#
# mask_original = np.copy(mask)
# mask_original[mask_original < 127] = 0
# mask_original[mask_original >= 127] = 1
# mask_original = mask_original[:, :, None]
# mask, _ = resize_pad2divisior(mask, inpaint_size)
#
# # cv2.imwrite('img_resized.png', img_resized)
# # cv2.imwrite('mask_resized.png', mask)
#
#
# if use_cuda :
# with torch.autocast(enabled = True, device_type = 'cuda') :
# img = model.img2img_inpaint(
# image = Image.fromarray(img_resized),
# c_text = pos_prompt,
# uc_text = neg_prompt,
# mask = Image.fromarray(mask),
# use_cuda = True
# )
# else :
# img = model.img2img_inpaint(
# image = Image.fromarray(img_resized),
# c_text = pos_prompt,
# uc_text = neg_prompt,
# mask = Image.fromarray(mask),
# use_cuda = False
# )
#
# img_inpainted = (einops.rearrange(img, '1 c h w -> h w c').cpu().numpy() * 127.5 + 127.5).astype(np.uint8)
# if pad_h != 0:
# img_inpainted = img_inpainted[:-pad_h]
# if pad_w != 0:
# img_inpainted = img_inpainted[:, :-pad_w]
#
#
# if img_inpainted.shape[0] != im_h or img_inpainted.shape[1] != im_w:
# img_inpainted = cv2.resize(img_inpainted, (im_w, im_h), interpolation = cv2.INTER_LINEAR)
# ans = img_inpainted * mask_original + img_original * (1 - mask_original)
# ans = img_inpainted
# return ans
import requests
from PIL import Image
def ldm_inpaint_webui(
img, mask, resolution: int, url: str, prompt: str = '', neg_prompt: str = '',
**inpaint_ldm_options):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
im_h, im_w = img.height, img.width
if img.height > img.width:
W = resolution
H = (img.height / img.width * resolution) // 32 * 32
H = int(H)
else:
H = resolution
W = (img.width / img.height * resolution) // 32 * 32
W = int(W)
auth = None
if 'username' in inpaint_ldm_options:
username = inpaint_ldm_options.pop('username')
password = inpaint_ldm_options.pop('password')
auth = HTTPBasicAuth(username, password)
img_b64 = img2b64(img)
mask_b64 = img2b64(mask)
data = {
"init_images": [img_b64],
"mask": mask_b64,
"prompt": prompt,
"negative_prompt": neg_prompt,
"width": W,
"height": H,
**inpaint_ldm_options,
}
data = json.dumps(data)
response = submit_request(url, data, auth=auth)
inpainted_b64 = response.json()['images'][0]
inpainted = Image.open(io.BytesIO(base64.b64decode(inpainted_b64)))
if inpainted.height != im_h or inpainted.width != im_w:
inpainted = inpainted.resize((im_w, im_h), resample=Image.Resampling.LANCZOS)
inpainted = np.array(inpainted)
return inpainted