AnimeIns_CPU / utils /effects.py
ljsabc's picture
add utils
8aa4f1e
raw
history blame
6.05 kB
from numba import jit, njit
import numpy as np
import time
import cv2
import math
from pathlib import Path
import os.path as osp
import torch
from .cupy_utils import launch_kernel, preprocess_kernel
import cupy
def bokeh_filter_cupy(img, depth, dx, dy, im_h, im_w, num_samples=32):
blurred = img.clone()
n = im_h * im_w
str_kernel = '''
extern "C" __global__ void kernel_bokeh(
const int n,
const int h,
const int w,
const int nsamples,
const float dx,
const float dy,
const float* img,
const float* depth,
float* blurred
) {
const int im_size = min(h, w);
const int sample_offset = nsamples / 2;
for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n * 3; intIndex += blockDim.x * gridDim.x) {
const int intSample = intIndex / 3;
const int c = intIndex % 3;
const int y = ( intSample / w) % h;
const int x = intSample % w;
const int flatten_xy = y * w + x;
const int fid = flatten_xy * 3 + c;
const float d = depth[flatten_xy];
const float _dx = dx * d;
const float _dy = dy * d;
float weight = 0;
float color = 0;
for (int s = 0; s < nsamples; s += 1) {
const int sp = (s - sample_offset) * im_size;
const int x_ = x + int(round(_dx * sp));
const int y_ = y + int(round(_dy * sp));
if ((x_ >= w) | (y_ >= h) | (x_ < 0) | (y_ < 0))
continue;
const int flatten_xy_ = y_ * w + x_;
const float w_ = depth[flatten_xy_];
weight += w_;
const int fid_ = flatten_xy_ * 3 + c;
color += img[fid_] * w_;
}
if (weight != 0) {
color /= weight;
}
else {
color = img[fid];
}
blurred[fid] = color;
}
}
'''
launch_kernel('kernel_bokeh', str_kernel)(
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]),
block=tuple([ 512, 1, 1 ]),
args=[ cupy.int32(n), cupy.int32(im_h), cupy.int32(im_w), \
cupy.int32(num_samples), cupy.float32(dx), cupy.float32(dy),
img.data_ptr(), depth.data_ptr(), blurred.data_ptr() ]
)
return blurred
def np2flatten_tensor(arr: np.ndarray, to_cuda: bool = True) -> torch.Tensor:
c = 1
if len(arr.shape) == 3:
c = arr.shape[2]
else:
arr = arr[..., None]
arr = arr.transpose((2, 0, 1))[None, ...]
t = torch.from_numpy(arr).view(1, c, -1)
if to_cuda:
t = t.cuda()
return t
def ftensor2img(t: torch.Tensor, im_h, im_w):
t = t.detach().cpu().numpy().squeeze()
c = t.shape[0]
t = t.transpose((1, 0)).reshape((im_h, im_w, c))
return t
@njit
def bokeh_filter(img, depth, dx, dy, num_samples=32):
sample_offset = num_samples // 2
# _scale = 0.0005
# depth = depth * _scale
im_h, im_w = img.shape[0], img.shape[1]
im_size = min(im_h, im_w)
blured = np.zeros_like(img)
for x in range(im_w):
for y in range(im_h):
d = depth[y, x]
_color = np.array([0, 0, 0], dtype=np.float32)
_dx = dx * d
_dy = dy * d
weight = 0
for s in range(num_samples):
s = (s - sample_offset) * im_size
x_ = x + int(round(_dx * s))
y_ = y + int(round(_dy * s))
if x_ >= im_w or y_ >= im_h or x_ < 0 or y_ < 0:
continue
_w = depth[y_, x_]
weight += _w
_color += img[y_, x_] * _w
if weight == 0:
blured[y, x] = img[y, x]
else:
blured[y, x] = _color / np.array([weight, weight, weight], dtype=np.float32)
return blured
def bokeh_blur(img, depth, num_samples=32, lightness_factor=10, depth_factor=2, use_cuda=False, focal_plane=None):
img = np.ascontiguousarray(img)
if depth is not None:
depth = depth.astype(np.float32)
if focal_plane is not None:
depth = depth.max() - np.abs(depth - focal_plane)
if depth_factor != 1:
depth = np.power(depth, depth_factor)
depth = depth - depth.min()
depth = depth.astype(np.float32) / depth.max()
depth = 1 - depth
img = img.astype(np.float32) / 255
img_hightlighted = np.power(img, lightness_factor)
# img =
im_h, im_w = img.shape[:2]
PI = math.pi
_scale = 0.0005
depth = depth * _scale
if use_cuda:
img_hightlighted = np2flatten_tensor(img_hightlighted, True)
depth = np2flatten_tensor(depth, True)
vertical_blured = bokeh_filter_cupy(img_hightlighted, depth, 0, 1, im_h, im_w, num_samples)
diag_blured = bokeh_filter_cupy(vertical_blured, depth, math.cos(-PI/6), math.sin(-PI/6), im_h, im_w, num_samples)
rhom_blur = bokeh_filter_cupy(diag_blured, depth, math.cos(-PI * 5 /6), math.sin(-PI * 5 /6), im_h, im_w, num_samples)
blured = (diag_blured + rhom_blur) / 2
blured = ftensor2img(blured, im_h, im_w)
else:
vertical_blured = bokeh_filter(img_hightlighted, depth, 0, 1, num_samples)
diag_blured = bokeh_filter(vertical_blured, depth, math.cos(-PI/6), math.sin(-PI/6), num_samples)
rhom_blur = bokeh_filter(diag_blured, depth, math.cos(-PI * 5 /6), math.sin(-PI * 5 /6), num_samples)
blured = (diag_blured + rhom_blur) / 2
blured = np.power(blured, 1 / lightness_factor)
blured = (blured * 255).astype(np.uint8)
return blured