Spaces:
Running
Running
import pandas as pd | |
import gradio as gr | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import LabelEncoder | |
# Load and preprocess the dataset | |
data = pd.read_csv('data.csv') | |
# Preprocessing | |
data['Age'] = data['Age'].fillna(data['Age'].median()) | |
data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0]) | |
data['Fare'] = pd.to_numeric(data['Fare'], errors='coerce') | |
data['Fare'] = data['Fare'].fillna(data['Fare'].median()) | |
label_encoder = LabelEncoder() | |
data['Gender'] = label_encoder.fit_transform(data['Gender']) | |
data['Embarked'] = label_encoder.fit_transform(data['Embarked']) | |
data.drop(['Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) | |
# Feature selection | |
features = ['Pclass', 'Gender', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] | |
X = data[features] | |
y = data['Survived'] | |
# Train the model | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
model = RandomForestClassifier(random_state=42) | |
model.fit(X_train, y_train) | |
# Gradio interface function | |
def predict_survival(Pclass, Gender, Age, SibSp, Parch, Fare, Embarked): | |
# Handle missing or invalid inputs | |
if not Gender: | |
return "⚠️ Error: Please select a Gender." | |
if not Embarked: | |
return "⚠️ Error: Please select a Port of Embarkation." | |
# Encode Gender and Embarked | |
Gender_encoded = 1 if Gender.lower() == 'female' else 0 | |
Embarked_encoded = {'s': 0, 'c': 1, 'q': 2}.get(Embarked.lower(), 0) | |
# Create input DataFrame | |
input_data = pd.DataFrame([[Pclass, Gender_encoded, Age, SibSp, Parch, Fare, Embarked_encoded]], | |
columns=features) | |
# Predict | |
prediction = model.predict(input_data) | |
return "✅ Survived" if prediction[0] == 1 else "❌ Did Not Survive" | |
# Gradio inputs and outputs | |
inputs = [ | |
gr.Slider(1, 3, step=1, label="Passenger Class (Pclass)"), | |
gr.Radio(["Male", "Female"], label="Gender"), | |
gr.Slider(0, 80, step=1, label="Age (in years)"), | |
gr.Slider(0, 10, step=1, label="Siblings/Spouses (SibSp)"), | |
gr.Slider(0, 10, step=1, label="Parents/Children (Parch)"), | |
gr.Slider(0, 500, step=1, label="Ticket Fare (in $)"), | |
gr.Radio(["S (Southampton)", "C (Cherbourg)", "Q (Queenstown)"], label="Port of Embarkation (Embarked)") | |
] | |
outputs = gr.Textbox(label="Prediction or Error Message") | |
# Launch Gradio interface | |
gr.Interface(fn=predict_survival, inputs=inputs, outputs=outputs, title="Titanic Survival Predictor By Ozan").launch() | |