Spaces:
Sleeping
Sleeping
Update src/ui_components_original.py
Browse files- src/ui_components_original.py +465 -198
src/ui_components_original.py
CHANGED
|
@@ -9,6 +9,8 @@ from datetime import datetime
|
|
| 9 |
from PIL import Image
|
| 10 |
import html
|
| 11 |
from typing import Optional, Dict, Any
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# ---- Safe imports for local vs package execution ----
|
| 14 |
try:
|
|
@@ -456,46 +458,57 @@ button.gr-button:hover, button.gr-button-primary:hover {
|
|
| 456 |
}
|
| 457 |
|
| 458 |
.status-warning {
|
| 459 |
-
background: linear-gradient(135deg, #
|
| 460 |
-
border: 2px solid #
|
| 461 |
-
color: #
|
| 462 |
padding: 20px 24px !important;
|
| 463 |
border-radius: 16px !important;
|
| 464 |
font-weight: 600 !important;
|
| 465 |
margin: 16px 0 !important;
|
| 466 |
-
box-shadow: 0 8px 24px rgba(
|
| 467 |
backdrop-filter: blur(10px) !important;
|
| 468 |
}
|
| 469 |
|
| 470 |
-
/* Image
|
| 471 |
.image-gallery {
|
| 472 |
-
display: grid;
|
| 473 |
-
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
| 474 |
-
gap: 20px;
|
| 475 |
-
margin: 20px 0;
|
| 476 |
}
|
| 477 |
-
|
| 478 |
-
.image-item
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
font-weight: 700 !important;
|
| 489 |
-
padding: 14px 28px !important;
|
| 490 |
-
font-size: 1.1rem !important;
|
| 491 |
-
letter-spacing: 0.5px !important;
|
| 492 |
-
text-align: center !important;
|
| 493 |
-
transition: all 0.2s ease-in-out !important;
|
| 494 |
}
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
|
|
|
|
|
|
| 499 |
}
|
| 500 |
|
| 501 |
/* Responsive */
|
|
@@ -675,13 +688,7 @@ button.gr-button:hover, button.gr-button-primary:hover {
|
|
| 675 |
with gr.Column(scale=1):
|
| 676 |
gr.HTML("<h3>📸 Wound Image</h3>")
|
| 677 |
wound_image = gr.Image(label="Upload Wound Image", type="filepath")
|
| 678 |
-
|
| 679 |
-
# to manually mark the wound boundary after the automatic segmentation has run.
|
| 680 |
-
manual_mask_input = gr.Image(
|
| 681 |
-
label="Manual Segmentation Mask (optional)",
|
| 682 |
-
type="filepath",
|
| 683 |
-
interactive=True,
|
| 684 |
-
)
|
| 685 |
# Slider to adjust the automatic segmentation mask. Positive values dilate
|
| 686 |
# (expand) the mask, negative values erode (shrink) it. The value represents
|
| 687 |
# roughly percentage change where each 5 units corresponds to one iteration.
|
|
@@ -693,6 +700,7 @@ button.gr-button:hover, button.gr-button-primary:hover {
|
|
| 693 |
label="Segmentation Adjustment",
|
| 694 |
info="Adjust the automatic segmentation (negative shrinks, positive expands)"
|
| 695 |
)
|
|
|
|
| 696 |
gr.HTML("<h3>📝 Medical History</h3>")
|
| 697 |
previous_treatment = gr.Textbox(label="Previous Treatment", lines=3)
|
| 698 |
medical_history = gr.Textbox(label="Medical History", lines=3)
|
|
@@ -700,7 +708,43 @@ button.gr-button:hover, button.gr-button-primary:hover {
|
|
| 700 |
allergies = gr.Textbox(label="Known Allergies", lines=2)
|
| 701 |
additional_notes = gr.Textbox(label="Additional Notes", lines=3)
|
| 702 |
|
| 703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
analysis_output = gr.HTML("")
|
| 705 |
|
| 706 |
# ------------------- PATIENT HISTORY -------------------
|
|
@@ -792,213 +836,436 @@ button.gr-button:hover, button.gr-button-primary:hover {
|
|
| 792 |
return {
|
| 793 |
auth_panel: gr.update(visible=True),
|
| 794 |
practitioner_panel: gr.update(visible=False),
|
| 795 |
-
organization_panel: gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 796 |
}
|
| 797 |
|
| 798 |
-
def
|
| 799 |
return {
|
| 800 |
-
|
| 801 |
-
|
| 802 |
}
|
| 803 |
|
| 804 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 805 |
try:
|
| 806 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 807 |
if not uid:
|
| 808 |
return "<div class='status-error'>❌ Please login first.</div>"
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
out.append(r)
|
| 817 |
-
return self.patient_history_manager.format_history_for_display(out)
|
| 818 |
except Exception as e:
|
| 819 |
-
logging.error(f"
|
| 820 |
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
|
| 821 |
|
| 822 |
-
def
|
| 823 |
try:
|
| 824 |
-
uid = int(self.current_user.get("id", 0)
|
| 825 |
if not uid:
|
| 826 |
return "<div class='status-error'>❌ Please login first.</div>"
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
return
|
| 837 |
except Exception as e:
|
| 838 |
-
logging.error(f"search error: {e}")
|
| 839 |
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
|
| 840 |
|
| 841 |
-
def
|
| 842 |
try:
|
| 843 |
-
uid = int(self.current_user.get("id", 0)
|
| 844 |
if not uid:
|
| 845 |
return "<div class='status-error'>❌ Please login first.</div>"
|
| 846 |
-
|
|
|
|
| 847 |
if not pid:
|
| 848 |
-
return "<div class='status-warning'>⚠️ Select a patient.</div>"
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
return self.patient_history_manager.format_patient_progress_for_display(out)
|
| 857 |
except Exception as e:
|
| 858 |
-
logging.error(f"
|
| 859 |
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
|
| 860 |
|
| 861 |
-
# -----------------------
|
| 862 |
-
signup_role.change(
|
| 863 |
-
|
| 864 |
-
inputs=[signup_role],
|
| 865 |
-
outputs=[org_fields, prac_fields]
|
| 866 |
-
)
|
| 867 |
-
|
| 868 |
signup_btn.click(
|
| 869 |
handle_signup,
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
)
|
| 874 |
-
|
| 875 |
login_btn.click(
|
| 876 |
handle_login,
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
)
|
| 881 |
-
|
| 882 |
-
logout_btn_prac.click(
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
inputs=[patient_mode],
|
| 888 |
-
outputs=[new_patient_group, existing_patient_dd]
|
| 889 |
)
|
| 890 |
-
|
| 891 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 892 |
analyze_btn.click(
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
img, seg_adj, manual_mask
|
| 899 |
-
),
|
| 900 |
-
inputs=[
|
| 901 |
-
patient_mode, existing_patient_dd,
|
| 902 |
-
new_patient_name, new_patient_age, new_patient_gender,
|
| 903 |
-
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
|
| 904 |
-
previous_treatment, medical_history, medications, allergies, additional_notes,
|
| 905 |
-
wound_image, manual_mask_input, seg_adjust_slider
|
| 906 |
-
],
|
| 907 |
-
outputs=[analysis_output]
|
| 908 |
)
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 913 |
|
| 914 |
return app
|
| 915 |
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
"""Format comprehensive analysis results with all visualization images from AIProcessor."""
|
| 919 |
try:
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
tissue_type = visual_analysis.get('tissue_type', 'Unknown')
|
| 934 |
-
length_cm = visual_analysis.get('length_cm', 0)
|
| 935 |
-
breadth_cm = visual_analysis.get('breadth_cm', 0)
|
| 936 |
-
area_cm2 = visual_analysis.get('surface_area_cm2', 0)
|
| 937 |
-
detection_confidence = visual_analysis.get('detection_confidence', 0)
|
| 938 |
-
|
| 939 |
-
detection_image_path = visual_analysis.get('detection_image_path', '')
|
| 940 |
-
segmentation_image_path = visual_analysis.get('segmentation_image_path', '')
|
| 941 |
-
original_image_path = visual_analysis.get('original_image_path', '')
|
| 942 |
-
|
| 943 |
-
original_image_base64 = None
|
| 944 |
-
detection_image_base64 = None
|
| 945 |
-
segmentation_image_base64 = None
|
| 946 |
-
|
| 947 |
-
if image_url and os.path.exists(image_url):
|
| 948 |
-
original_image_base64 = self.image_to_base64(image_url)
|
| 949 |
-
elif original_image_path and os.path.exists(original_image_path):
|
| 950 |
-
original_image_base64 = self.image_to_base64(original_image_path)
|
| 951 |
-
elif saved_image_path and os.path.exists(saved_image_path):
|
| 952 |
-
original_image_base64 = self.image_to_base64(saved_image_path)
|
| 953 |
-
|
| 954 |
-
if detection_image_path and os.path.exists(detection_image_path):
|
| 955 |
-
detection_image_base64 = self.image_to_base64(detection_image_path)
|
| 956 |
-
|
| 957 |
-
if segmentation_image_path and os.path.exists(segmentation_image_path):
|
| 958 |
-
segmentation_image_base64 = self.image_to_base64(segmentation_image_path)
|
| 959 |
-
|
| 960 |
risk_assessment = self._generate_risk_assessment(questionnaire_data)
|
| 961 |
-
risk_level = risk_assessment
|
| 962 |
-
risk_score = risk_assessment
|
| 963 |
-
risk_factors = risk_assessment[
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 978 |
<div class="image-item">
|
| 979 |
-
<img src="{
|
| 980 |
-
<h4>📸 Original
|
| 981 |
-
<p>Uploaded
|
| 982 |
</div>
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 986 |
<div class="image-item">
|
| 987 |
-
<img src="{
|
| 988 |
<h4>🎯 Wound Detection</h4>
|
| 989 |
-
<p>AI-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 990 |
</div>
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 994 |
<div class="image-item">
|
| 995 |
-
<img src="{
|
| 996 |
-
<h4>📏
|
| 997 |
-
<p>
|
| 998 |
</div>
|
| 999 |
-
|
| 1000 |
-
|
|
|
|
| 1001 |
|
|
|
|
| 1002 |
report_html = self.markdown_to_html(report) if report else ""
|
| 1003 |
|
| 1004 |
html_output = f"""
|
|
|
|
| 9 |
from PIL import Image
|
| 10 |
import html
|
| 11 |
from typing import Optional, Dict, Any
|
| 12 |
+
import numpy as np
|
| 13 |
+
import cv2
|
| 14 |
|
| 15 |
# ---- Safe imports for local vs package execution ----
|
| 16 |
try:
|
|
|
|
| 458 |
}
|
| 459 |
|
| 460 |
.status-warning {
|
| 461 |
+
background: linear-gradient(135deg, #FFFBEB 0%, #FEF3C7 100%) !important;
|
| 462 |
+
border: 2px solid #F59E0B !important;
|
| 463 |
+
color: #92400E !important;
|
| 464 |
padding: 20px 24px !important;
|
| 465 |
border-radius: 16px !important;
|
| 466 |
font-weight: 600 !important;
|
| 467 |
margin: 16px 0 !important;
|
| 468 |
+
box-shadow: 0 8px 24px rgba(245, 158, 11, 0.2) !important;
|
| 469 |
backdrop-filter: blur(10px) !important;
|
| 470 |
}
|
| 471 |
|
| 472 |
+
/* Image Gallery */
|
| 473 |
.image-gallery {
|
| 474 |
+
display: grid !important;
|
| 475 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)) !important;
|
| 476 |
+
gap: 20px !important;
|
| 477 |
+
margin: 20px 0 !important;
|
| 478 |
}
|
| 479 |
+
|
| 480 |
+
.image-item {
|
| 481 |
+
background: white !important;
|
| 482 |
+
border-radius: 16px !important;
|
| 483 |
+
padding: 20px !important;
|
| 484 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
|
| 485 |
+
transition: transform 0.3s ease !important;
|
| 486 |
+
}
|
| 487 |
+
|
| 488 |
+
.image-item:hover {
|
| 489 |
+
transform: translateY(-5px) !important;
|
| 490 |
+
box-shadow: 0 16px 48px rgba(0, 0, 0, 0.15) !important;
|
| 491 |
+
}
|
| 492 |
+
|
| 493 |
+
.image-item img {
|
| 494 |
+
width: 100% !important;
|
| 495 |
+
height: auto !important;
|
| 496 |
+
border-radius: 12px !important;
|
| 497 |
+
margin-bottom: 12px !important;
|
| 498 |
+
}
|
| 499 |
+
|
| 500 |
+
.image-item h4 {
|
| 501 |
+
color: #2D3748 !important;
|
| 502 |
+
margin: 0 0 8px 0 !important;
|
| 503 |
+
font-size: 1.2rem !important;
|
| 504 |
font-weight: 700 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
}
|
| 506 |
+
|
| 507 |
+
.image-item p {
|
| 508 |
+
color: #4A5568 !important;
|
| 509 |
+
margin: 0 !important;
|
| 510 |
+
font-size: 0.95rem !important;
|
| 511 |
+
line-height: 1.5 !important;
|
| 512 |
}
|
| 513 |
|
| 514 |
/* Responsive */
|
|
|
|
| 688 |
with gr.Column(scale=1):
|
| 689 |
gr.HTML("<h3>📸 Wound Image</h3>")
|
| 690 |
wound_image = gr.Image(label="Upload Wound Image", type="filepath")
|
| 691 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 692 |
# Slider to adjust the automatic segmentation mask. Positive values dilate
|
| 693 |
# (expand) the mask, negative values erode (shrink) it. The value represents
|
| 694 |
# roughly percentage change where each 5 units corresponds to one iteration.
|
|
|
|
| 700 |
label="Segmentation Adjustment",
|
| 701 |
info="Adjust the automatic segmentation (negative shrinks, positive expands)"
|
| 702 |
)
|
| 703 |
+
|
| 704 |
gr.HTML("<h3>📝 Medical History</h3>")
|
| 705 |
previous_treatment = gr.Textbox(label="Previous Treatment", lines=3)
|
| 706 |
medical_history = gr.Textbox(label="Medical History", lines=3)
|
|
|
|
| 708 |
allergies = gr.Textbox(label="Known Allergies", lines=2)
|
| 709 |
additional_notes = gr.Textbox(label="Additional Notes", lines=3)
|
| 710 |
|
| 711 |
+
# Initial analysis button
|
| 712 |
+
analyze_btn = gr.Button("🔬 Preview Segmentation", variant="primary", elem_id="analyze-btn")
|
| 713 |
+
|
| 714 |
+
# Segmentation preview section (initially hidden)
|
| 715 |
+
with gr.Group(visible=False) as segmentation_preview_group:
|
| 716 |
+
gr.HTML("<h3>🎯 Segmentation Preview</h3>")
|
| 717 |
+
segmentation_preview = gr.Image(label="Automatic Segmentation", interactive=False)
|
| 718 |
+
|
| 719 |
+
with gr.Row():
|
| 720 |
+
accept_segmentation_btn = gr.Button("✅ Accept & Generate Full Report", variant="primary")
|
| 721 |
+
manual_edit_btn = gr.Button("✏️ Manual Edit", variant="secondary")
|
| 722 |
+
|
| 723 |
+
# Manual editing section (initially hidden)
|
| 724 |
+
with gr.Group(visible=False) as manual_edit_group:
|
| 725 |
+
gr.HTML("""
|
| 726 |
+
<div style="background: #e6f3ff; padding: 15px; border-radius: 8px; margin: 10px 0;">
|
| 727 |
+
<h4 style="margin: 0 0 10px 0; color: #1a365d;">📝 Manual Segmentation Instructions</h4>
|
| 728 |
+
<p style="margin: 0; color: #2c5282;">
|
| 729 |
+
Use the drawing tool below to manually mark the wound area.
|
| 730 |
+
Select the pen tool and draw over the wound region to create your mask.
|
| 731 |
+
</p>
|
| 732 |
+
</div>
|
| 733 |
+
""")
|
| 734 |
+
|
| 735 |
+
# Manual mask input using ImageMask component
|
| 736 |
+
manual_mask_input = gr.ImageMask(
|
| 737 |
+
sources=["upload"],
|
| 738 |
+
layers=False,
|
| 739 |
+
transforms=[],
|
| 740 |
+
format="png",
|
| 741 |
+
label="Manual Segmentation - Draw on the image to mark wound area",
|
| 742 |
+
show_label=True,
|
| 743 |
+
interactive=True
|
| 744 |
+
)
|
| 745 |
+
|
| 746 |
+
process_manual_btn = gr.Button("🔬 Generate Report with Manual Mask", variant="primary")
|
| 747 |
+
|
| 748 |
analysis_output = gr.HTML("")
|
| 749 |
|
| 750 |
# ------------------- PATIENT HISTORY -------------------
|
|
|
|
| 836 |
return {
|
| 837 |
auth_panel: gr.update(visible=True),
|
| 838 |
practitioner_panel: gr.update(visible=False),
|
| 839 |
+
organization_panel: gr.update(visible=False),
|
| 840 |
+
login_status: "<div class='status-warning'>Please sign in.</div>",
|
| 841 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 842 |
+
manual_edit_group: gr.update(visible=False),
|
| 843 |
+
analysis_output: ""
|
| 844 |
}
|
| 845 |
|
| 846 |
+
def toggle_patient_mode(mode):
|
| 847 |
return {
|
| 848 |
+
existing_patient_dd: gr.update(visible=(mode == "Existing patient")),
|
| 849 |
+
new_patient_group: gr.update(visible=(mode == "New patient"))
|
| 850 |
}
|
| 851 |
|
| 852 |
+
def process_image_for_segmentation(
|
| 853 |
+
mode, existing_label, np_name, np_age, np_gender,
|
| 854 |
+
w_loc, w_dur, pain, moist, infect, diabetic,
|
| 855 |
+
prev_tx, med_hist, meds, alls, notes, img_path, seg_adjust
|
| 856 |
+
):
|
| 857 |
+
"""Process image and show segmentation preview"""
|
| 858 |
+
if not img_path:
|
| 859 |
+
return {
|
| 860 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 861 |
+
analysis_output: "<div class='status-error'>❌ Please upload a wound image.</div>"
|
| 862 |
+
}
|
| 863 |
+
|
| 864 |
try:
|
| 865 |
+
# Run initial analysis to get segmentation
|
| 866 |
+
user_id = int(self.current_user.get("id", 0) or 0)
|
| 867 |
+
if not user_id:
|
| 868 |
+
return {
|
| 869 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 870 |
+
analysis_output: "<div class='status-error'>❌ Please login first.</div>"
|
| 871 |
+
}
|
| 872 |
+
|
| 873 |
+
# Prepare questionnaire data for AI
|
| 874 |
+
if mode == "Existing patient":
|
| 875 |
+
pid = _label_to_id(existing_label)
|
| 876 |
+
if not pid:
|
| 877 |
+
return {
|
| 878 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 879 |
+
analysis_output: "<div class='status-warning'>⚠️ Select an existing patient.</div>"
|
| 880 |
+
}
|
| 881 |
+
# Fetch patient data
|
| 882 |
+
row = self.database_manager.execute_query_one(
|
| 883 |
+
"SELECT id, name, age, gender FROM patients WHERE id=%s LIMIT 1", (pid,)
|
| 884 |
+
)
|
| 885 |
+
pcore = row or {}
|
| 886 |
+
patient_name_v = pcore.get("name")
|
| 887 |
+
patient_age_v = pcore.get("age")
|
| 888 |
+
patient_gender_v = pcore.get("gender")
|
| 889 |
+
else:
|
| 890 |
+
patient_name_v = np_name
|
| 891 |
+
patient_age_v = np_age
|
| 892 |
+
patient_gender_v = np_gender
|
| 893 |
+
|
| 894 |
+
q_for_ai = {
|
| 895 |
+
'age': patient_age_v,
|
| 896 |
+
'diabetic': 'Yes' if diabetic != 'Non-diabetic' else 'No',
|
| 897 |
+
'allergies': alls,
|
| 898 |
+
'date_of_injury': 'Unknown',
|
| 899 |
+
'professional_care': 'Yes',
|
| 900 |
+
'oozing_bleeding': 'Minor Oozing' if infect != 'None' else 'None',
|
| 901 |
+
'infection': 'Yes' if infect != 'None' else 'No',
|
| 902 |
+
'moisture': moist,
|
| 903 |
+
'patient_name': patient_name_v,
|
| 904 |
+
'patient_gender': patient_gender_v,
|
| 905 |
+
'wound_location': w_loc,
|
| 906 |
+
'wound_duration': w_dur,
|
| 907 |
+
'pain_level': pain,
|
| 908 |
+
'previous_treatment': prev_tx,
|
| 909 |
+
'medical_history': med_hist,
|
| 910 |
+
'medications': meds,
|
| 911 |
+
'additional_notes': notes
|
| 912 |
+
}
|
| 913 |
+
|
| 914 |
+
# Run visual analysis only to get segmentation
|
| 915 |
+
image_pil = Image.open(img_path)
|
| 916 |
+
visual_results = self.wound_analyzer.perform_visual_analysis(image_pil)
|
| 917 |
+
|
| 918 |
+
if not visual_results:
|
| 919 |
+
return {
|
| 920 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 921 |
+
analysis_output: "<div class='status-error'>❌ Failed to analyze image.</div>"
|
| 922 |
+
}
|
| 923 |
+
|
| 924 |
+
# Get segmentation image path
|
| 925 |
+
seg_path = visual_results.get("segmentation_image_path")
|
| 926 |
+
if not seg_path or not os.path.exists(seg_path):
|
| 927 |
+
return {
|
| 928 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 929 |
+
analysis_output: "<div class='status-error'>❌ Segmentation failed.</div>"
|
| 930 |
+
}
|
| 931 |
+
|
| 932 |
+
return {
|
| 933 |
+
segmentation_preview_group: gr.update(visible=True),
|
| 934 |
+
segmentation_preview: seg_path,
|
| 935 |
+
manual_edit_group: gr.update(visible=False),
|
| 936 |
+
analysis_output: "<div class='status-success'>✅ Segmentation preview ready. Review and choose to accept or manually edit.</div>"
|
| 937 |
+
}
|
| 938 |
+
|
| 939 |
+
except Exception as e:
|
| 940 |
+
logging.error(f"Segmentation preview error: {e}")
|
| 941 |
+
return {
|
| 942 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 943 |
+
analysis_output: f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
|
| 944 |
+
}
|
| 945 |
+
|
| 946 |
+
def show_manual_edit_interface(img_path):
|
| 947 |
+
"""Show manual editing interface with the original image"""
|
| 948 |
+
if not img_path or not os.path.exists(img_path):
|
| 949 |
+
return {
|
| 950 |
+
manual_edit_group: gr.update(visible=False),
|
| 951 |
+
analysis_output: "<div class='status-error'>❌ Original image not available for editing.</div>"
|
| 952 |
+
}
|
| 953 |
+
|
| 954 |
+
return {
|
| 955 |
+
manual_edit_group: gr.update(visible=True),
|
| 956 |
+
manual_mask_input: img_path, # Load the original image for manual editing
|
| 957 |
+
analysis_output: "<div class='status-warning'>⚠️ Use the drawing tool to manually mark the wound area, then click 'Generate Report with Manual Mask'.</div>"
|
| 958 |
+
}
|
| 959 |
+
|
| 960 |
+
def process_manual_mask(mask_data):
|
| 961 |
+
"""Process the manual mask from ImageMask component"""
|
| 962 |
+
if not mask_data:
|
| 963 |
+
return "<div class='status-error'>❌ No manual mask provided.</div>"
|
| 964 |
+
|
| 965 |
+
try:
|
| 966 |
+
# Extract the mask from the ImageMask component
|
| 967 |
+
# The mask_data contains both the background image and the drawn mask
|
| 968 |
+
if isinstance(mask_data, dict) and "layers" in mask_data:
|
| 969 |
+
# Get the alpha channel from the first layer (the drawn mask)
|
| 970 |
+
alpha_channel = mask_data["layers"][0][:, :, 3]
|
| 971 |
+
# Convert to binary mask
|
| 972 |
+
mask = np.where(alpha_channel == 0, 0, 255).astype(np.uint8)
|
| 973 |
+
|
| 974 |
+
# Save the mask temporarily
|
| 975 |
+
import tempfile
|
| 976 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
| 977 |
+
cv2.imwrite(tmp.name, mask)
|
| 978 |
+
manual_mask_path = tmp.name
|
| 979 |
+
|
| 980 |
+
return manual_mask_path
|
| 981 |
+
else:
|
| 982 |
+
return None
|
| 983 |
+
|
| 984 |
+
except Exception as e:
|
| 985 |
+
logging.error(f"Manual mask processing error: {e}")
|
| 986 |
+
return None
|
| 987 |
+
|
| 988 |
+
def run_full_analysis_with_manual_mask(
|
| 989 |
+
mode, existing_label, np_name, np_age, np_gender,
|
| 990 |
+
w_loc, w_dur, pain, moist, infect, diabetic,
|
| 991 |
+
prev_tx, med_hist, meds, alls, notes, img_path, seg_adjust, mask_data
|
| 992 |
+
):
|
| 993 |
+
"""Run full analysis with manual mask"""
|
| 994 |
+
try:
|
| 995 |
+
# Process manual mask
|
| 996 |
+
manual_mask_path = process_manual_mask(mask_data)
|
| 997 |
+
|
| 998 |
+
# Run the full analysis with manual mask
|
| 999 |
+
result_html = standalone_run_analysis(
|
| 1000 |
+
self, self.current_user, self.database_manager, self.wound_analyzer,
|
| 1001 |
+
mode, existing_label, np_name, np_age, np_gender,
|
| 1002 |
+
w_loc, w_dur, pain, moist, infect, diabetic,
|
| 1003 |
+
prev_tx, med_hist, meds, alls, notes, img_path,
|
| 1004 |
+
seg_adjust, manual_mask_path
|
| 1005 |
+
)
|
| 1006 |
+
|
| 1007 |
+
# Clean up temporary file
|
| 1008 |
+
if manual_mask_path and os.path.exists(manual_mask_path):
|
| 1009 |
+
try:
|
| 1010 |
+
os.unlink(manual_mask_path)
|
| 1011 |
+
except:
|
| 1012 |
+
pass
|
| 1013 |
+
|
| 1014 |
+
return {
|
| 1015 |
+
analysis_output: result_html,
|
| 1016 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 1017 |
+
manual_edit_group: gr.update(visible=False)
|
| 1018 |
+
}
|
| 1019 |
+
|
| 1020 |
+
except Exception as e:
|
| 1021 |
+
logging.error(f"Manual analysis error: {e}")
|
| 1022 |
+
return {
|
| 1023 |
+
analysis_output: f"<div class='status-error'>❌ Analysis failed: {html.escape(str(e))}</div>"
|
| 1024 |
+
}
|
| 1025 |
+
|
| 1026 |
+
def run_full_analysis_accept_segmentation(
|
| 1027 |
+
mode, existing_label, np_name, np_age, np_gender,
|
| 1028 |
+
w_loc, w_dur, pain, moist, infect, diabetic,
|
| 1029 |
+
prev_tx, med_hist, meds, alls, notes, img_path, seg_adjust
|
| 1030 |
+
):
|
| 1031 |
+
"""Run full analysis accepting the automatic segmentation"""
|
| 1032 |
+
try:
|
| 1033 |
+
result_html = standalone_run_analysis(
|
| 1034 |
+
self, self.current_user, self.database_manager, self.wound_analyzer,
|
| 1035 |
+
mode, existing_label, np_name, np_age, np_gender,
|
| 1036 |
+
w_loc, w_dur, pain, moist, infect, diabetic,
|
| 1037 |
+
prev_tx, med_hist, meds, alls, notes, img_path,
|
| 1038 |
+
seg_adjust, None # No manual mask
|
| 1039 |
+
)
|
| 1040 |
+
|
| 1041 |
+
return {
|
| 1042 |
+
analysis_output: result_html,
|
| 1043 |
+
segmentation_preview_group: gr.update(visible=False),
|
| 1044 |
+
manual_edit_group: gr.update(visible=False)
|
| 1045 |
+
}
|
| 1046 |
+
|
| 1047 |
+
except Exception as e:
|
| 1048 |
+
logging.error(f"Analysis error: {e}")
|
| 1049 |
+
return {
|
| 1050 |
+
analysis_output: f"<div class='status-error'>❌ Analysis failed: {html.escape(str(e))}</div>"
|
| 1051 |
+
}
|
| 1052 |
+
|
| 1053 |
+
def load_patient_history():
|
| 1054 |
+
try:
|
| 1055 |
+
uid = int(self.current_user.get("id", 0))
|
| 1056 |
if not uid:
|
| 1057 |
return "<div class='status-error'>❌ Please login first.</div>"
|
| 1058 |
+
|
| 1059 |
+
history_data = self.patient_history_manager.get_patient_history(uid)
|
| 1060 |
+
if not history_data:
|
| 1061 |
+
return "<div class='status-warning'>⚠️ No patient history found.</div>"
|
| 1062 |
+
|
| 1063 |
+
html_report = self.report_generator.generate_history_report(history_data)
|
| 1064 |
+
return html_report
|
|
|
|
|
|
|
| 1065 |
except Exception as e:
|
| 1066 |
+
logging.error(f"History load error: {e}")
|
| 1067 |
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
|
| 1068 |
|
| 1069 |
+
def search_patient_by_name(name):
|
| 1070 |
try:
|
| 1071 |
+
uid = int(self.current_user.get("id", 0))
|
| 1072 |
if not uid:
|
| 1073 |
return "<div class='status-error'>❌ Please login first.</div>"
|
| 1074 |
+
|
| 1075 |
+
if not name or not name.strip():
|
| 1076 |
+
return "<div class='status-warning'>⚠️ Enter a patient name to search.</div>"
|
| 1077 |
+
|
| 1078 |
+
results = self.patient_history_manager.search_patients_by_name(uid, name.strip())
|
| 1079 |
+
if not results:
|
| 1080 |
+
return f"<div class='status-warning'>⚠️ No patients found matching '{html.escape(name)}'.</div>"
|
| 1081 |
+
|
| 1082 |
+
html_report = self.report_generator.generate_search_results(results, name)
|
| 1083 |
+
return html_report
|
| 1084 |
except Exception as e:
|
| 1085 |
+
logging.error(f"Patient search error: {e}")
|
| 1086 |
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
|
| 1087 |
|
| 1088 |
+
def view_patient_details(selected_label):
|
| 1089 |
try:
|
| 1090 |
+
uid = int(self.current_user.get("id", 0))
|
| 1091 |
if not uid:
|
| 1092 |
return "<div class='status-error'>❌ Please login first.</div>"
|
| 1093 |
+
|
| 1094 |
+
pid = _label_to_id(selected_label)
|
| 1095 |
if not pid:
|
| 1096 |
+
return "<div class='status-warning'>⚠️ Select a patient to view details.</div>"
|
| 1097 |
+
|
| 1098 |
+
details = self.patient_history_manager.get_patient_details(uid, pid)
|
| 1099 |
+
if not details:
|
| 1100 |
+
return "<div class='status-warning'>⚠️ No details found for selected patient.</div>"
|
| 1101 |
+
|
| 1102 |
+
html_report = self.report_generator.generate_patient_timeline(details)
|
| 1103 |
+
return html_report
|
|
|
|
| 1104 |
except Exception as e:
|
| 1105 |
+
logging.error(f"Patient details error: {e}")
|
| 1106 |
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
|
| 1107 |
|
| 1108 |
+
# ----------------------- Event bindings -----------------------
|
| 1109 |
+
signup_role.change(toggle_role_fields, [signup_role], [org_fields, prac_fields])
|
| 1110 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1111 |
signup_btn.click(
|
| 1112 |
handle_signup,
|
| 1113 |
+
[signup_username, signup_email, signup_password, signup_name, signup_role,
|
| 1114 |
+
org_name, phone, country_code, department, location, organization_dropdown],
|
| 1115 |
+
[signup_status]
|
| 1116 |
)
|
| 1117 |
+
|
| 1118 |
login_btn.click(
|
| 1119 |
handle_login,
|
| 1120 |
+
[login_username, login_password],
|
| 1121 |
+
[login_status, auth_panel, practitioner_panel, organization_panel, user_info,
|
| 1122 |
+
existing_patient_dd, view_details_dd]
|
| 1123 |
)
|
| 1124 |
+
|
| 1125 |
+
logout_btn_prac.click(
|
| 1126 |
+
handle_logout,
|
| 1127 |
+
[],
|
| 1128 |
+
[auth_panel, practitioner_panel, organization_panel, login_status,
|
| 1129 |
+
segmentation_preview_group, manual_edit_group, analysis_output]
|
|
|
|
|
|
|
| 1130 |
)
|
| 1131 |
+
|
| 1132 |
+
logout_btn_org.click(
|
| 1133 |
+
handle_logout,
|
| 1134 |
+
[],
|
| 1135 |
+
[auth_panel, practitioner_panel, organization_panel, login_status,
|
| 1136 |
+
segmentation_preview_group, manual_edit_group, analysis_output]
|
| 1137 |
+
)
|
| 1138 |
+
|
| 1139 |
+
patient_mode.change(toggle_patient_mode, [patient_mode], [existing_patient_dd, new_patient_group])
|
| 1140 |
+
|
| 1141 |
+
# Segmentation preview workflow
|
| 1142 |
analyze_btn.click(
|
| 1143 |
+
process_image_for_segmentation,
|
| 1144 |
+
[patient_mode, existing_patient_dd, new_patient_name, new_patient_age, new_patient_gender,
|
| 1145 |
+
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
|
| 1146 |
+
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image, seg_adjust_slider],
|
| 1147 |
+
[segmentation_preview_group, segmentation_preview, manual_edit_group, analysis_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1148 |
)
|
| 1149 |
+
|
| 1150 |
+
# Accept segmentation and generate full report
|
| 1151 |
+
accept_segmentation_btn.click(
|
| 1152 |
+
run_full_analysis_accept_segmentation,
|
| 1153 |
+
[patient_mode, existing_patient_dd, new_patient_name, new_patient_age, new_patient_gender,
|
| 1154 |
+
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
|
| 1155 |
+
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image, seg_adjust_slider],
|
| 1156 |
+
[analysis_output, segmentation_preview_group, manual_edit_group]
|
| 1157 |
+
)
|
| 1158 |
+
|
| 1159 |
+
# Show manual edit interface
|
| 1160 |
+
manual_edit_btn.click(
|
| 1161 |
+
show_manual_edit_interface,
|
| 1162 |
+
[wound_image],
|
| 1163 |
+
[manual_edit_group, manual_mask_input, analysis_output]
|
| 1164 |
+
)
|
| 1165 |
+
|
| 1166 |
+
# Process manual mask and generate report
|
| 1167 |
+
process_manual_btn.click(
|
| 1168 |
+
run_full_analysis_with_manual_mask,
|
| 1169 |
+
[patient_mode, existing_patient_dd, new_patient_name, new_patient_age, new_patient_gender,
|
| 1170 |
+
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
|
| 1171 |
+
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image, seg_adjust_slider, manual_mask_input],
|
| 1172 |
+
[analysis_output, segmentation_preview_group, manual_edit_group]
|
| 1173 |
+
)
|
| 1174 |
+
|
| 1175 |
+
history_btn.click(load_patient_history, [], [patient_history_output])
|
| 1176 |
+
search_patient_btn.click(search_patient_by_name, [search_patient_name], [specific_patient_output])
|
| 1177 |
+
view_details_btn.click(view_patient_details, [view_details_dd], [view_details_output])
|
| 1178 |
|
| 1179 |
return app
|
| 1180 |
|
| 1181 |
+
def _format_comprehensive_analysis_results(self, analysis_result, image_path, questionnaire_data):
|
| 1182 |
+
"""Format comprehensive analysis results with enhanced visual presentation"""
|
|
|
|
| 1183 |
try:
|
| 1184 |
+
visual_analysis = analysis_result.get("visual_analysis", {})
|
| 1185 |
+
report = analysis_result.get("report", "")
|
| 1186 |
+
|
| 1187 |
+
# Extract key metrics
|
| 1188 |
+
wound_type = visual_analysis.get("wound_type", "Unknown")
|
| 1189 |
+
length_cm = visual_analysis.get("length_cm", 0)
|
| 1190 |
+
breadth_cm = visual_analysis.get("breadth_cm", 0)
|
| 1191 |
+
area_cm2 = visual_analysis.get("surface_area_cm2", 0)
|
| 1192 |
+
skin_tone_label = visual_analysis.get("skin_tone_label", "Unknown")
|
| 1193 |
+
ita_deg = visual_analysis.get("ita_degrees")
|
| 1194 |
+
tissue_type = visual_analysis.get("tissue_type", "Unknown")
|
| 1195 |
+
|
| 1196 |
+
# Generate risk assessment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1197 |
risk_assessment = self._generate_risk_assessment(questionnaire_data)
|
| 1198 |
+
risk_level = risk_assessment.get("risk_level", "Unknown")
|
| 1199 |
+
risk_score = risk_assessment.get("risk_score", 0)
|
| 1200 |
+
risk_factors = risk_assessment.get("risk_factors", [])
|
| 1201 |
+
risk_class = risk_level.lower().replace(" ", "_")
|
| 1202 |
+
|
| 1203 |
+
# Format risk factors
|
| 1204 |
+
if risk_factors:
|
| 1205 |
+
risk_factors_html = "<ul style='margin: 10px 0; padding-left: 20px;'>"
|
| 1206 |
+
for factor in risk_factors:
|
| 1207 |
+
risk_factors_html += f"<li style='margin: 5px 0; color: #2d3748;'>{html.escape(str(factor))}</li>"
|
| 1208 |
+
risk_factors_html += "</ul>"
|
| 1209 |
+
else:
|
| 1210 |
+
risk_factors_html = "<p style='color: #4a5568; font-style: italic;'>No specific risk factors identified.</p>"
|
| 1211 |
+
|
| 1212 |
+
# Create image gallery
|
| 1213 |
+
image_gallery_html = "<div class='image-gallery'>"
|
| 1214 |
+
|
| 1215 |
+
# Original image
|
| 1216 |
+
if image_path and os.path.exists(image_path):
|
| 1217 |
+
img_b64 = self.image_to_base64(image_path)
|
| 1218 |
+
if img_b64:
|
| 1219 |
+
image_gallery_html += f"""
|
| 1220 |
<div class="image-item">
|
| 1221 |
+
<img src="{img_b64}" alt="Original Wound Image">
|
| 1222 |
+
<h4>📸 Original Image</h4>
|
| 1223 |
+
<p>Uploaded wound photograph for analysis</p>
|
| 1224 |
</div>
|
| 1225 |
+
"""
|
| 1226 |
+
|
| 1227 |
+
# Detection visualization
|
| 1228 |
+
detection_path = visual_analysis.get("detection_image_path")
|
| 1229 |
+
if detection_path and os.path.exists(detection_path):
|
| 1230 |
+
img_b64 = self.image_to_base64(detection_path)
|
| 1231 |
+
if img_b64:
|
| 1232 |
+
image_gallery_html += f"""
|
| 1233 |
<div class="image-item">
|
| 1234 |
+
<img src="{img_b64}" alt="Wound Detection">
|
| 1235 |
<h4>🎯 Wound Detection</h4>
|
| 1236 |
+
<p>AI-powered wound boundary detection with confidence: {visual_analysis.get('detection_confidence', 0):.1%}</p>
|
| 1237 |
+
</div>
|
| 1238 |
+
"""
|
| 1239 |
+
|
| 1240 |
+
# Segmentation visualization
|
| 1241 |
+
seg_path = visual_analysis.get("segmentation_image_path")
|
| 1242 |
+
if seg_path and os.path.exists(seg_path):
|
| 1243 |
+
img_b64 = self.image_to_base64(seg_path)
|
| 1244 |
+
if img_b64:
|
| 1245 |
+
image_gallery_html += f"""
|
| 1246 |
+
<div class="image-item">
|
| 1247 |
+
<img src="{img_b64}" alt="Wound Segmentation">
|
| 1248 |
+
<h4>🔍 Wound Segmentation</h4>
|
| 1249 |
+
<p>Precise wound boundary identification and tissue analysis</p>
|
| 1250 |
</div>
|
| 1251 |
+
"""
|
| 1252 |
+
|
| 1253 |
+
# Annotated measurements
|
| 1254 |
+
annotated_path = visual_analysis.get("segmentation_annotated_path")
|
| 1255 |
+
if annotated_path and os.path.exists(annotated_path):
|
| 1256 |
+
img_b64 = self.image_to_base64(annotated_path)
|
| 1257 |
+
if img_b64:
|
| 1258 |
+
image_gallery_html += f"""
|
| 1259 |
<div class="image-item">
|
| 1260 |
+
<img src="{img_b64}" alt="Annotated Measurements">
|
| 1261 |
+
<h4>📏 Measurements</h4>
|
| 1262 |
+
<p>Calibrated dimensional analysis with length and width indicators</p>
|
| 1263 |
</div>
|
| 1264 |
+
"""
|
| 1265 |
+
|
| 1266 |
+
image_gallery_html += "</div>"
|
| 1267 |
|
| 1268 |
+
# Convert report markdown to HTML
|
| 1269 |
report_html = self.markdown_to_html(report) if report else ""
|
| 1270 |
|
| 1271 |
html_output = f"""
|