Spaces:
Sleeping
Sleeping
import gradio as gr | |
from src.utils import LLMHandler, initialize_newsletter, integrate_personalized_text, build_context, build_prompt | |
from src.utils_api import get_recommendations | |
import yaml | |
import logging | |
import argparse | |
import os | |
import tempfile | |
# logging.basicConfig(filename='logs/app.log', encoding='utf-8', level=logging.info) | |
logging.basicConfig(level=logging.INFO) | |
def main(): | |
# get arguments with argparse | |
parser = argparse.ArgumentParser(description='Newsletter Generator') | |
parser.add_argument('--config-file', type=str, default='./config/config.yaml', help='Path to the configuration file.') | |
args = parser.parse_args() | |
logging.info("Starting the Newsletter Generator app...") | |
# Load configuration from YAML file | |
logging.info("Loading configuration from config.yaml...") | |
with open(args.config_file, "r") as file: | |
config = yaml.safe_load(file) | |
# setup | |
#try: | |
# os.environ["RECOMMENDER_URL"] = config['recommender_api']['base_url'] | |
# os.environ["RECOMMENDER_KEY"] = config['recommender_api']['key'] | |
# os.environ["OPENAI_KEY"] = config['llm']['api_key'] | |
#except: | |
# pass | |
llm_settings = config['llm'] | |
config['llm']['api_key'] = os.environ["OPENAI_KEY"] | |
newsletter_meta_info = config['newsletter'] | |
logging.debug(f"Configuration loaded: {config}") | |
# Initialize the LLM handler | |
llm_handler = LLMHandler(**llm_settings) | |
logging.info(f"LLM handler initialized with the following settings: {config['llm']}") | |
# Define the function to generate the newsletter using the OpenAI API | |
def generate_newsletter( | |
customer_id, | |
model_name, | |
temperature, | |
max_tokens, | |
system_message, | |
textual_preferences, | |
progress=gr.Progress() | |
): | |
# get recommendations | |
progress(0.1, "Fetching Client History...") | |
logging.info("Getting recommendations...") | |
customer_info, recommendations, transactions = get_recommendations( | |
customer_id, | |
max_recs=newsletter_meta_info['max_recommendations'], | |
max_transactions=newsletter_meta_info['max_recents_items']) | |
logging.debug(f"Recommendations: {recommendations}") | |
logging.debug(f"Transactions: {transactions}") | |
print("cusomter info", customer_info) | |
# Load the html template and replace the placeholders for images with the actual content | |
logging.info("Initializing newsletter template...") | |
progress(0.5, "Initializing personalized content...") | |
newsletter_text = initialize_newsletter(newsletter_meta_info, transactions, recommendations) | |
# Build context from the user preferences, the recommendations and the transactions | |
context = build_context( | |
recommendations, | |
transactions, | |
textual_preferences, | |
customer_info) | |
logging.info(f"Context: {context}") | |
# Build the prompt for the LLM | |
progress(0.7, "Generating personalized content...") | |
prompt = build_prompt(context) | |
logging.info(f"Prompt: {prompt}") | |
# Generate the newsletter | |
sections = llm_handler.generate( | |
prompt, | |
model_name, | |
temperature, | |
max_tokens, | |
system_message) | |
logging.info(f"Sections: {sections}") | |
# Intergrate personalized text | |
logging.info("Integrating personalized text...") | |
newsletter_text = integrate_personalized_text(newsletter_text, customer_info, sections) | |
# Save HTML to a temporary file for download | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as temp_file: | |
temp_file.write(newsletter_text.encode("utf-8")) | |
temp_file_path = temp_file.name | |
progress(1.0) | |
return newsletter_text, temp_file_path | |
logging.info("Creating interface...") | |
with gr.Blocks() as demo: | |
# Header Section | |
gr.Markdown("## AI-Powered Newsletter for Fashion Brands", elem_id="header") | |
# Input Section | |
with gr.Row(): | |
customer_id = gr.Dropdown( | |
label="Customer ID", | |
#value="04a183a27a6877e560e1025216d0a3b40d88668c68366da17edfb18ed89c574c", | |
interactive=True, | |
choices=[ | |
("customer 1", "04a183a27a6877e560e1025216d0a3b40d88668c68366da17edfb18ed89c574c"), | |
("customer 2", "1abaca5cd299000720538c70ba2ed246db6731bce924b5b4ca81770a47842656"), | |
("customer 3", "1741b0d1b2c29994084b7312001c1b11ab8b112b3fd05ac765f4d232afdc4eaf") | |
] | |
) | |
with gr.Row(): | |
textual_preferences = gr.Textbox( | |
label="Newsletter Preferences", | |
placeholder="Enter rich newsletter preferences." | |
) | |
# Advanced Settings | |
with gr.Accordion("βοΈ Advanced Settings", open=False): | |
with gr.Row(): | |
model_name = gr.Dropdown( | |
label="LLM Model", | |
choices=["gpt-3.5-turbo", "gpt-4o"], | |
value=llm_handler.model_name | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=llm_handler.default_temperature | |
) | |
with gr.Row(): | |
max_tokens = gr.Number( | |
label="Max Tokens", | |
value=llm_handler.default_max_tokens, | |
precision=0 | |
) | |
system_message = gr.Textbox( | |
label="System Message", | |
placeholder="Enter a custom system message (optional).", | |
value=llm_handler.default_system_message, | |
visible=False | |
) | |
# User Context (Hidden by Default) | |
with gr.Accordion("π§βπ» User Context", open=False, visible=False): | |
pass # Placeholder for future user context integration. | |
# Output Section | |
with gr.Row(): | |
generate_button = gr.Button("Generate Personalized Newsletter", variant="primary") | |
download = gr.DownloadButton("Download") | |
newsletter_output = gr.HTML( | |
label="Generated Newsletter", | |
value="<br><br><br><br><br>", | |
min_height=500, | |
render=True | |
) | |
# Event Binding | |
generate_button.click( | |
fn=generate_newsletter, | |
inputs=[ | |
customer_id, | |
model_name, | |
temperature, | |
max_tokens, | |
system_message, | |
textual_preferences | |
], | |
outputs=[newsletter_output, download] | |
) | |
# Launch App | |
demo.queue().launch( | |
share=config['app']['share'], | |
server_port=config['app']['server_port'] | |
) | |
# Gradio interface for the app | |
""" logging.info("Creating interface...") | |
with gr.Blocks() as demo: | |
gr.Markdown("### Newsletter Generator") | |
customer_id = gr.Textbox(label="Client ID", value="04a183a27a6877e560e1025216d0a3b40d88668c68366da17edfb18ed89c574c") | |
textual_preferences = gr.Textbox(label="Newsletter preferences", placeholder="The newsletter should be catchy.") | |
# llm_preferences = gr.Textbox(label="LLM Preferences", placeholder="Enter LLM preferences.", visible=False) | |
# create an openable block for the llm preferences | |
with gr.Accordion("LLM Preferences", open=False): | |
model_name = gr.Dropdown(label="Model Name", choices=["gpt-3.5-turbo", "gpt-4o"], value=llm_handler.model_name) | |
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.05, value=llm_handler.default_temperature) | |
max_tokens = gr.Number(label="Max Tokens", value=llm_handler.default_max_tokens) | |
system_message = gr.Textbox(label="System Message", placeholder="Enter the system message or Leave Blank.", value=llm_handler.default_system_message) | |
with gr.Accordion("User Context", open=False, visible=False): | |
# get profiled user context | |
pass | |
generate_button = gr.Button("Generate Newsletter") | |
# create a button to open the newsletter in a new tab | |
download = gr.DownloadButton(label="Download Newsletter") | |
newsletter_output = gr.HTML(label="Generated Newsletter", min_height="500", value="<br><br><br><br><br>") | |
generate_button.click( | |
fn=generate_newsletter, | |
inputs=[ | |
customer_id, | |
# llm preferences | |
model_name, | |
temperature, | |
max_tokens, | |
system_message, | |
# newsletter preferences | |
textual_preferences], | |
outputs=[newsletter_output, download] | |
) | |
demo.queue().launch(share=config['app']['share'], server_port=config['app']['server_port'])""" | |
if __name__ == "__main__": | |
main() |