Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- README.md +3 -9
- app.py +18 -0
- chatbot.ipynb +150 -0
- discollm.py +18 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji: 🏢
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.28.2
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: echo-chatbot
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 4.27.0
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ollama
|
2 |
+
import gradio as gr
|
3 |
+
def chat(question, history):
|
4 |
+
history_format = []
|
5 |
+
for human, assistant in history:
|
6 |
+
history_format.append({"role": "user", "content": human})
|
7 |
+
history_format.append({"role": "assistant", "content":assistant})
|
8 |
+
history_format.append({'role': 'user', 'content': question})
|
9 |
+
|
10 |
+
messages=history_format
|
11 |
+
stream = ollama.chat(model='llama3', messages=messages)
|
12 |
+
#print(history_format)
|
13 |
+
return stream['message']['content']
|
14 |
+
|
15 |
+
# Gradio interface
|
16 |
+
assistant_icon = gr.Image(value="C:/Users/chris/Downloads/japanese-lama-ghibli-artstyle.jpeg", width=32, height=32) # adjust the size as needed
|
17 |
+
assistant_img = gr.Image(value="C:/Users/chris/Downloads/japanese-lama-ghibli-artstyle.jpeg", elem_id="assistant_img")
|
18 |
+
gr.ChatInterface(fn=chat, title="Chat Bot",chatbot=gr.Chatbot(height=300)).launch()
|
chatbot.ipynb
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import gradio as gr\n",
|
10 |
+
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
11 |
+
"from langchain.chains import LLMChain\n",
|
12 |
+
"from langchain_community.llms import GPT4All\n",
|
13 |
+
"from langchain_core.prompts import PromptTemplate\n",
|
14 |
+
"from langchain.memory import ConversationBufferMemory\n",
|
15 |
+
"from langchain_core.prompts import (\n",
|
16 |
+
" ChatPromptTemplate,\n",
|
17 |
+
" MessagesPlaceholder,\n",
|
18 |
+
" SystemMessagePromptTemplate,\n",
|
19 |
+
" HumanMessagePromptTemplate,\n",
|
20 |
+
")\n",
|
21 |
+
"\n",
|
22 |
+
"def response(input, history):\n",
|
23 |
+
" # Path to your local GPT4All model\n",
|
24 |
+
" local_path = \"C:/Users/chris/AppData/Local/nomic.ai/GPT4All/Meta-Llama-3-8B-Instruct.Q4_0.gguf\"\n",
|
25 |
+
"\n",
|
26 |
+
" # Callbacks support token-wise streaming\n",
|
27 |
+
" callbacks = [StreamingStdOutCallbackHandler()]\n",
|
28 |
+
"\n",
|
29 |
+
" # Initialize GPT4All model\n",
|
30 |
+
" llm = GPT4All(streaming= True, model=local_path, backend=\"gptj\", callbacks=callbacks, verbose=False)\n",
|
31 |
+
"\n",
|
32 |
+
" prompt = ChatPromptTemplate(\n",
|
33 |
+
" messages=[\n",
|
34 |
+
" SystemMessagePromptTemplate.from_template(\n",
|
35 |
+
" \"You are a cute anime chatbot having a conversation with a human.\"\n",
|
36 |
+
" ),\n",
|
37 |
+
" # The `variable_name` here is what must align with memory\n",
|
38 |
+
" MessagesPlaceholder(variable_name=\"{history}\"),\n",
|
39 |
+
" HumanMessagePromptTemplate.from_template(\"{question}\")\n",
|
40 |
+
" ]\n",
|
41 |
+
" )\n",
|
42 |
+
"\n",
|
43 |
+
" # Initialize conversation memory\n",
|
44 |
+
" memory = ConversationBufferMemory(memory_key=\"{history}\", return_messages=True)\n",
|
45 |
+
" #memory = history\n",
|
46 |
+
"\n",
|
47 |
+
" # Create an LLMChain instance for the conversation\n",
|
48 |
+
" conversation = LLMChain(\n",
|
49 |
+
" llm=llm,\n",
|
50 |
+
" prompt=prompt,\n",
|
51 |
+
" verbose=False,\n",
|
52 |
+
" memory=memory\n",
|
53 |
+
" )\n",
|
54 |
+
"\n",
|
55 |
+
" # Generate a response using the input and the LLMChain\n",
|
56 |
+
" response = conversation.invoke(input={\"question\": input})[\"text\"]\n",
|
57 |
+
"\n",
|
58 |
+
" return response\n",
|
59 |
+
"\n",
|
60 |
+
"gr.ChatInterface(response).launch()\n"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"# Local Llama 3 Chatbot"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": 109,
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [
|
77 |
+
{
|
78 |
+
"name": "stdout",
|
79 |
+
"output_type": "stream",
|
80 |
+
"text": [
|
81 |
+
"Running on local URL: http://127.0.0.1:7919\n",
|
82 |
+
"\n",
|
83 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"data": {
|
88 |
+
"text/html": [
|
89 |
+
"<div><iframe src=\"http://127.0.0.1:7919/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
90 |
+
],
|
91 |
+
"text/plain": [
|
92 |
+
"<IPython.core.display.HTML object>"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"data": {
|
100 |
+
"text/plain": []
|
101 |
+
},
|
102 |
+
"execution_count": 109,
|
103 |
+
"metadata": {},
|
104 |
+
"output_type": "execute_result"
|
105 |
+
}
|
106 |
+
],
|
107 |
+
"source": [
|
108 |
+
"import ollama\n",
|
109 |
+
"import gradio as gr\n",
|
110 |
+
"def chat(question, history):\n",
|
111 |
+
" history_format = []\n",
|
112 |
+
" for human, assistant in history:\n",
|
113 |
+
" history_format.append({\"role\": \"user\", \"content\": human})\n",
|
114 |
+
" history_format.append({\"role\": \"assistant\", \"content\":assistant})\n",
|
115 |
+
" history_format.append({'role': 'user', 'content': question})\n",
|
116 |
+
"\n",
|
117 |
+
" messages=history_format\n",
|
118 |
+
" stream = ollama.chat(model='llama3', messages=messages)\n",
|
119 |
+
" #print(history_format)\n",
|
120 |
+
" return stream['message']['content']\n",
|
121 |
+
"\n",
|
122 |
+
"# Gradio interface\n",
|
123 |
+
"assistant_icon = gr.Image(value=\"C:/Users/chris/Downloads/japanese-lama-ghibli-artstyle.jpeg\", width=32, height=32) # adjust the size as needed\n",
|
124 |
+
"assistant_img = gr.Image(value=\"C:/Users/chris/Downloads/japanese-lama-ghibli-artstyle.jpeg\", elem_id=\"assistant_img\")\n",
|
125 |
+
"gr.ChatInterface(fn=chat, title=\"Chat Bot\",chatbot=gr.Chatbot(height=300)).launch()"
|
126 |
+
]
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"metadata": {
|
130 |
+
"kernelspec": {
|
131 |
+
"display_name": "Python 3",
|
132 |
+
"language": "python",
|
133 |
+
"name": "python3"
|
134 |
+
},
|
135 |
+
"language_info": {
|
136 |
+
"codemirror_mode": {
|
137 |
+
"name": "ipython",
|
138 |
+
"version": 3
|
139 |
+
},
|
140 |
+
"file_extension": ".py",
|
141 |
+
"mimetype": "text/x-python",
|
142 |
+
"name": "python",
|
143 |
+
"nbconvert_exporter": "python",
|
144 |
+
"pygments_lexer": "ipython3",
|
145 |
+
"version": "3.12.3"
|
146 |
+
}
|
147 |
+
},
|
148 |
+
"nbformat": 4,
|
149 |
+
"nbformat_minor": 2
|
150 |
+
}
|
discollm.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ollama
|
2 |
+
import gradio as gr
|
3 |
+
def chat(question, history):
|
4 |
+
history_format = []
|
5 |
+
for human, assistant in history:
|
6 |
+
history_format.append({"role": "user", "content": human})
|
7 |
+
history_format.append({"role": "assistant", "content":assistant})
|
8 |
+
history_format.append({'role': 'user', 'content': question})
|
9 |
+
|
10 |
+
messages=history_format
|
11 |
+
stream = ollama.chat(model='llama3', messages=messages)
|
12 |
+
#print(history_format)
|
13 |
+
return stream['message']['content']
|
14 |
+
|
15 |
+
# Gradio interface
|
16 |
+
assistant_icon = gr.Image(value="C:/Users/chris/Downloads/japanese-lama-ghibli-artstyle.jpeg", width=32, height=32) # adjust the size as needed
|
17 |
+
assistant_img = gr.Image(value="C:/Users/chris/Downloads/japanese-lama-ghibli-artstyle.jpeg", elem_id="assistant_img")
|
18 |
+
gr.ChatInterface(fn=chat, title="Chat Bot",chatbot=gr.Chatbot(height=300)).launch()
|