Spaces:
Sleeping
Sleeping
import spaces | |
import jiwer | |
import numpy as np | |
import gradio as gr | |
def calculate_wer(reference, hypothesis): | |
reference_str = " ".join(reference) | |
hypothesis_str = " ".join(hypothesis) | |
return jiwer.wer(reference_str, hypothesis_str) | |
def calculate_cer(reference, hypothesis): | |
reference_str = " ".join(reference) | |
hypothesis_str = " ".join(hypothesis) | |
return jiwer.cer(reference_str, hypothesis_str) | |
def calculate_sentence_metrics(reference, hypothesis): | |
reference_sentences = [line.strip() for line in reference] | |
hypothesis_sentences = [line.strip() for line in hypothesis] | |
sentence_wers = [] | |
sentence_cers = [] | |
min_length = min(len(reference_sentences), len(hypothesis_sentences)) | |
for i in range(min_length): | |
ref = reference_sentences[i] | |
hyp = hypothesis_sentences[i] | |
wer = jiwer.wer(ref, hyp) | |
cer = jiwer.cer(ref, hyp) | |
sentence_wers.append(wer) | |
sentence_cers.append(cer) | |
average_wer = np.mean(sentence_wers) if sentence_wers else 0.0 | |
std_dev_wer = np.std(sentence_wers) if sentence_wers else 0.0 | |
average_cer = np.mean(sentence_cers) if sentence_cers else 0.0 | |
std_dev_cer = np.std(sentence_cers) if sentence_cers else 0.0 | |
return { | |
"sentence_wers": sentence_wers, | |
"sentence_cers": sentence_cers, | |
"average_wer": average_wer, | |
"average_cer": average_cer, | |
"std_dev_wer": std_dev_wer, | |
"std_dev_cer": std_dev_cer | |
} | |
def identify_misaligned_sentences(reference, hypothesis): | |
reference_sentences = [line.strip() for line in reference] | |
hypothesis_sentences = [line.strip() for line in hypothesis] | |
misaligned = [] | |
for i, (ref, hyp) in enumerate(zip(reference_sentences, hypothesis_sentences)): | |
if ref != hyp: | |
ref_words = ref.split() | |
hyp_words = hyp.split() | |
min_length = min(len(ref_words), len(hyp_words)) | |
misalignment_start = 0 | |
for j in range(min_length): | |
if ref_words[j] != hyp_words[j]: | |
misalignment_start = j | |
break | |
context_ref = ' '.join(ref_words[:misalignment_start] + ['**' + ref_words[misalignment_start] + '**']) if ref_words else "" | |
context_hyp = ' '.join(hyp_words[:misalignment_start] + ['**' + hyp_words[misalignment_start] + '**']) if hyp_words else "" | |
misaligned.append({ | |
"index": i + 1, | |
"reference": ref, | |
"hypothesis": hyp, | |
"misalignment_start": misalignment_start, | |
"context_ref": context_ref, | |
"context_hyp": context_hyp | |
}) | |
# Handle extra sentences | |
if len(reference_sentences) > len(hypothesis_sentences): | |
for i in range(len(hypothesis_sentences), len(reference_sentences)): | |
misaligned.append({ | |
"index": i + 1, | |
"reference": reference_sentences[i], | |
"hypothesis": "No corresponding sentence", | |
"misalignment_start": 0, | |
"context_ref": reference_sentences[i], | |
"context_hyp": "No corresponding sentence" | |
}) | |
elif len(hypothesis_sentences) > len(reference_sentences): | |
for i in range(len(reference_sentences), len(hypothesis_sentences)): | |
misaligned.append({ | |
"index": i + 1, | |
"reference": "No corresponding sentence", | |
"hypothesis": hypothesis_sentences[i], | |
"misalignment_start": 0, | |
"context_ref": "No corresponding sentence", | |
"context_hyp": hypothesis_sentences[i] | |
}) | |
return misaligned | |
def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer): | |
md = "### Sentence-level Metrics\n\n" | |
md += f"**Average WER**: {average_wer:.2f}\n\n" | |
md += f"**Standard Deviation WER**: {std_dev_wer:.2f}\n\n" | |
md += f"**Average CER**: {average_cer:.2f}\n\n" | |
md += f"**Standard Deviation CER**: {std_dev_cer:.2f}\n\n" | |
md += "---\n**WER by Sentence**\n" | |
for i, wer in enumerate(sentence_wers): | |
md += f"- Sentence {i+1}: {wer:.2f}\n" | |
md += "\n**CER by Sentence**\n" | |
for i, cer in enumerate(sentence_cers): | |
md += f"- Sentence {i+1}: {cer:.2f}\n" | |
return md | |
def process_files(reference_file, hypothesis_file): | |
try: | |
with open(reference_file.name, 'r', encoding='utf-8') as f: | |
reference_text = f.read().splitlines() | |
with open(hypothesis_file.name, 'r', encoding='utf-8') as f: | |
hypothesis_text = f.read().splitlines() | |
overall_wer = calculate_wer(reference_text, hypothesis_text) | |
overall_cer = calculate_cer(reference_text, hypothesis_text) | |
sentence_metrics = calculate_sentence_metrics(reference_text, hypothesis_text) | |
misaligned = identify_misaligned_sentences(reference_text, hypothesis_text) | |
return { | |
"Overall WER": overall_wer, | |
"Overall CER": overall_cer, | |
**sentence_metrics, | |
"Misaligned Sentences": misaligned | |
} | |
except Exception as e: | |
return {"error": str(e)} | |
def process_and_display(ref_file, hyp_file): | |
result = process_files(ref_file, hyp_file) | |
if "error" in result: | |
return {"error": result["error"]}, "", "" | |
metrics = { | |
"Overall WER": result["Overall WER"], | |
"Overall CER": result["Overall CER"] | |
} | |
metrics_md = format_sentence_metrics( | |
result["sentence_wers"], | |
result["sentence_cers"], | |
result["average_wer"], | |
result["average_cer"], | |
result["std_dev_wer"], | |
result["std_dev_cer"] | |
) | |
misaligned_md = "### Misaligned Sentences\n\n" | |
if result["Misaligned Sentences"]: | |
for mis in result["Misaligned Sentences"]: | |
misaligned_md += f"**Sentence {mis['index']}**\n" | |
misaligned_md += f"- Reference: {mis['context_ref']}\n" | |
misaligned_md += f"- Hypothesis: {mis['context_hyp']}\n" | |
misaligned_md += f"- Misalignment starts at position: {mis['misalignment_start']}\n\n" | |
else: | |
misaligned_md += "* No misaligned sentences found." | |
return metrics, metrics_md, misaligned_md | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# π ASR Metrics Analysis Tool") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Upload your reference and hypothesis files") | |
reference_file = gr.File(label="Reference File (.txt)") | |
hypothesis_file = gr.File(label="Hypothesis File (.txt)") | |
compute_button = gr.Button("Compute Metrics", variant="primary") | |
with gr.Column(): | |
results_output = gr.JSON(label="Results Summary") | |
metrics_output = gr.Markdown(label="Sentence Metrics") | |
misaligned_output = gr.Markdown(label="Misaligned Sentences") | |
compute_button.click( | |
fn=process_and_display, | |
inputs=[reference_file, hypothesis_file], | |
outputs=[results_output, metrics_output, misaligned_output] | |
) | |
demo.launch(ssr_mode=False) | |
if __name__ == "__main__": | |
main() | |