Spaces:
Sleeping
Sleeping
# Convert Hugging Face fine-tuned models to ggml format | |
# | |
# Usage: | |
# | |
# git clone https://github.com/openai/whisper | |
# git clone https://github.com/ggerganov/whisper.cpp | |
# git clone https://huggingface.co/openai/whisper-medium | |
# | |
# python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper . | |
# | |
# This script is similar to "convert-pt-to-ggml.py" | |
# | |
# For more info: | |
# | |
# https://github.com/ggerganov/whisper.cpp/issues/157 | |
# | |
import io | |
import os | |
import sys | |
import struct | |
import json | |
import code | |
import torch | |
import numpy as np | |
from pathlib import Path | |
from transformers import WhisperForConditionalGeneration | |
conv_map = { | |
'self_attn.k_proj' : 'attn.key', | |
'self_attn.q_proj' : 'attn.query', | |
'self_attn.v_proj' : 'attn.value', | |
'self_attn.out_proj' : 'attn.out', | |
'self_attn_layer_norm' : 'attn_ln', | |
'encoder_attn.q_proj' : 'cross_attn.query', | |
'encoder_attn.v_proj' : 'cross_attn.value', | |
'encoder_attn.out_proj' : 'cross_attn.out', | |
'encoder_attn_layer_norm' : 'cross_attn_ln', | |
'fc1' : 'mlp.0', | |
'fc2' : 'mlp.2', | |
'final_layer_norm' : 'mlp_ln', | |
'encoder.layer_norm.bias' : 'encoder.ln_post.bias', | |
'encoder.layer_norm.weight' : 'encoder.ln_post.weight', | |
'encoder.embed_positions.weight': 'encoder.positional_embedding', | |
'decoder.layer_norm.bias' : 'decoder.ln.bias', | |
'decoder.layer_norm.weight' : 'decoder.ln.weight', | |
'decoder.embed_positions.weight': 'decoder.positional_embedding', | |
'decoder.embed_tokens.weight' : 'decoder.token_embedding.weight', | |
'proj_out.weight' : 'decoder.proj.weight', | |
} | |
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a significant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
if len(sys.argv) < 4: | |
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n") | |
sys.exit(1) | |
dir_model = Path(sys.argv[1]) | |
dir_whisper = Path(sys.argv[2]) | |
dir_out = Path(sys.argv[3]) | |
encoder = json.load((dir_model / "vocab.json").open("r", encoding="utf8")) | |
encoder_added = json.load((dir_model / "added_tokens.json").open( "r", encoding="utf8")) | |
hparams = json.load((dir_model / "config.json").open("r", encoding="utf8") ) | |
model = WhisperForConditionalGeneration.from_pretrained(dir_model) | |
#code.interact(local=locals()) | |
n_mels = hparams["num_mel_bins"] | |
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f: | |
filters = torch.from_numpy(f[f"mel_{n_mels}"]) | |
dir_tokenizer = dir_model | |
fname_out = dir_out / "ggml-model.bin" | |
tokens = json.load(open(dir_tokenizer / "vocab.json", "r", encoding="utf8")) | |
# use 16-bit or 32-bit floats | |
use_f16 = True | |
if len(sys.argv) > 4: | |
use_f16 = False | |
fname_out = dir_out / "ggml-model-f32.bin" | |
fout = open(fname_out, "wb") | |
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | |
fout.write(struct.pack("i", hparams["vocab_size"])) | |
fout.write(struct.pack("i", hparams["max_source_positions"])) | |
fout.write(struct.pack("i", hparams["d_model"])) | |
fout.write(struct.pack("i", hparams["encoder_attention_heads"])) | |
fout.write(struct.pack("i", hparams["encoder_layers"])) | |
fout.write(struct.pack("i", hparams["max_length"])) | |
fout.write(struct.pack("i", hparams["d_model"])) | |
fout.write(struct.pack("i", hparams["decoder_attention_heads"])) | |
fout.write(struct.pack("i", hparams["decoder_layers"])) | |
fout.write(struct.pack("i", hparams["num_mel_bins"])) | |
fout.write(struct.pack("i", use_f16)) | |
fout.write(struct.pack("i", filters.shape[0])) | |
fout.write(struct.pack("i", filters.shape[1])) | |
for i in range(filters.shape[0]): | |
for j in range(filters.shape[1]): | |
fout.write(struct.pack("f", filters[i][j])) | |
byte_encoder = bytes_to_unicode() | |
byte_decoder = {v:k for k, v in byte_encoder.items()} | |
fout.write(struct.pack("i", len(tokens))) | |
tokens = sorted(tokens.items(), key=lambda x: x[1]) | |
for key in tokens: | |
text = bytearray([byte_decoder[c] for c in key[0]]) | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
list_vars = model.state_dict() | |
for name in list_vars.keys(): | |
# this seems to not be used | |
# ref: https://github.com/huggingface/transformers/blob/9a5b84a0076a04fe9596da72e8668069d4f09ea0/src/transformers/models/whisper/modeling_whisper.py#L1099-L1106 | |
if name == "proj_out.weight": | |
print('Skipping', name) | |
continue | |
src = name | |
nn = name | |
if name != "proj_out.weight": | |
nn = nn.split(".")[1:] | |
else: | |
nn = nn.split(".") | |
if nn[1] == "layers": | |
nn[1] = "blocks" | |
if ".".join(nn[3:-1]) == "encoder_attn.k_proj": | |
mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key" | |
else: | |
mapped = conv_map[".".join(nn[3:-1])] | |
name = ".".join(nn[:3] + [mapped] + nn[-1:]) | |
else: | |
name = ".".join(nn) | |
name = conv_map[name] if name in conv_map else name | |
print(src, ' -> ', name) | |
data = list_vars[src].squeeze().numpy() | |
data = data.astype(np.float16) | |
# reshape conv bias from [n] to [n, 1] | |
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]: | |
data = data.reshape(data.shape[0], 1) | |
print(" Reshaped variable: " , name , " to shape: ", data.shape) | |
n_dims = len(data.shape) | |
print(name, n_dims, data.shape) | |
# looks like the whisper models are in f16 by default | |
# so we need to convert the small tensors to f32 until we fully support f16 in ggml | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype = 1 | |
if use_f16: | |
if n_dims < 2 or \ | |
name == "encoder.conv1.bias" or \ | |
name == "encoder.conv2.bias" or \ | |
name == "encoder.positional_embedding" or \ | |
name == "decoder.positional_embedding": | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype = 0 | |
else: | |
data = data.astype(np.float32) | |
ftype = 0 | |
# header | |
str_ = name.encode('utf-8') | |
fout.write(struct.pack("iii", n_dims, len(str_), ftype)) | |
for i in range(n_dims): | |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | |
fout.write(str_) | |
# data | |
data.tofile(fout) | |
fout.close() | |
print("Done. Output file: " , fname_out) | |
print("") | |