Spaces:
Sleeping
Sleeping
/** | |
* @file acl_tensor | |
* @brief This file contains related functions of ggml_tensor and acl_tensor. | |
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other | |
* functions. | |
* @author hipudding <huafengchun@gmail.com> | |
* @author wangshuai09 <391746016@qq.com> | |
* @date July 15, 2024 | |
* | |
* Copyright (c) 2023-2024 The ggml authors | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy | |
* of this software and associated documentation files (the "Software"), to | |
* deal in the Software without restriction, including without limitation the | |
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | |
* sell copies of the Software, and to permit persons to whom the Software is | |
* furnished to do so, subject to the following conditions: | |
* | |
* The above copyright notice and this permission notice shall be included in | |
* all copies or substantial portions of the Software. | |
* | |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | |
* IN THE SOFTWARE. | |
*/ | |
/** | |
* @brief Repeats a ggml tensor along each dimension to match the dimensions | |
* of another tensor. | |
* | |
* @details This function repeats the elements of a source ggml tensor along | |
* each dimension to create a destination tensor with the specified | |
* dimensions. The operation is performed using the ACL backend and | |
* executed asynchronously on the device. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The ggml tensor representing the destination, which op is | |
* GGML_OP_REPEAT and specifies the desired dimensions. | |
*/ | |
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Adds two ggml tensors using the CANN backend. | |
* | |
* @details This function performs an element-wise addition of two tensors. In | |
* case the tensors do not have the same shape, one or both tensors | |
* will be broadcasted to match the shape of the other before the | |
* addition is performed.The formula for the operation is given by: | |
* \f[ | |
* \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1} | |
* \f] | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The ggml tensor representing the destination, result of the | |
* addition is stored at dst->data, and dst->op is `GGML_OP_ADD` | |
*/ | |
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN | |
* backend. | |
* | |
* @details This function computes the Leaky ReLU activation for each element of | |
* the input tensor. The Leaky ReLU function allows a small gradient | |
* when the unit is not active (i.e., when the input is negative). The | |
* Leaky ReLU function is defined as: | |
* \f[ | |
* \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0, | |
* src) | |
* \f] | |
* `negativeSlope` is in dst->params. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the result of the Leaky ReLU | |
* activation is stored, which op is `GGML_OP_LEAKY_RELU` | |
*/ | |
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Concatenates multiple tensors along a specified dimension using the | |
* CANN backend. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param tensorList A pointer to the list of tensors to be concatenated. | |
* @param dst The destination tensor where the result of the | |
* concatenation is stored. dst->op is `GGML_OP_CONCAT`. | |
* @param concat_dim The dimension along which the tensors are concatenated. | |
* | |
* @attention tensorList length should be 2 and the dimension using for concat | |
* default to 1. | |
*/ | |
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Generates a sequence of evenly spaced values within a specified | |
* interval for a ggml tensor using the CANN backend. | |
* | |
* @details This function creates a sequence of numbers over a specified i | |
* nterval, starting from `start`, ending before `stop`, and | |
* incrementing by `step`. The sequence is stored in the destination | |
* tensor `dst`. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the generated sequence will be stored. | |
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is | |
* `GGML_OP_ARANGE`. | |
*/ | |
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the square of the elements of a ggml tensor using the CANN | |
* backend. | |
* @details The function sets the second source tensor of the destination | |
* tensor `dst` to be equal to the first source tensor. This is | |
* effectively squaring the elements since the multiplication becomes | |
* `element * element`. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the squared values will be stored, | |
* which dst->op is `GGML_OP_SQR`. | |
*/ | |
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies a clamp operation to the elements of a ggml tensor using the | |
* CANN backend. | |
* | |
* @details This function clamps the elements of the input tensor `src` to a | |
* specified range defined by `min` and `max` values. The result is | |
* stored in the destination tensor `dst`. The operation is defined as: | |
* \f[ | |
* y = \max(\min(x, max\_value), min\_value) | |
* \f] | |
* where `x` is an element of the input tensor, and `y` is the | |
* corresponding element in the output tensor. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the clamped values will be stored. | |
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params. | |
*/ | |
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Scales the elements of a ggml tensor by a constant factor using the | |
* CANN backend. | |
* | |
* @details This function multiplies each element of the input tensor `src` by | |
* a scaling factor `scale`, storing the result in the destination | |
* tensor `dst`. The operation is defined as: | |
* \f[ | |
* dst = src \times scale | |
* \f] | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the scaled values will be stored. | |
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params. | |
*/ | |
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Sorts the elements of a ggml tensor and returns the indices that | |
* would sort the tensor using the CANN backend. | |
* | |
* @details This function performs an argsort operation on the input tensor | |
* `src`. It sorts the elements of `src` in either ascending or | |
* descending order, depending on the `GGML_SORT_ORDER_DESC`, | |
* and returns the indices that would sort the original tensor. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the sorted indices will be stored. | |
* dst->op is `GGML_OP_ARGSORT`. | |
*/ | |
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the Layer Normalization for a ggml tensor using the CANN | |
* backend. | |
* | |
* @details This function applies the Layer Normalization operation on the | |
* input tensor `src` and stores the result in the destination tensor | |
* `dst`. Layer Normalization normalizes the features at each sample in | |
* a mini-batch independently. It is commonly used in neural networks | |
* to normalize the activations of a layer by adjusting and scaling | |
* the outputs. | |
* The operation is defined as: | |
* \f[ | |
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} | |
* \f] | |
* `Var` defaults dst->ne[0]. `eps` is in dst->params. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the normalized values will be stored. | |
* @attention `Var` defaults to dst->ne[0]. | |
*/ | |
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the Group Normalization for a ggml tensor using the CANN | |
* backend. | |
* | |
* @brief This function applies the Group Normalization operation on the input | |
* tensor `src` and stores the result in the destination tensor `dst`. | |
* Group Normalization divides the channels into groups and normalizes | |
* the features within each group across spatial locations. | |
* It is commonly used in convolutional neural networks to improve | |
* training stability and performance. | |
* The operation is defined as: | |
* \f[ | |
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} | |
* \f] | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the normalized values will be stored. | |
* `n_groups` is in dst->params, which split C channel to `n_groups`. | |
* dst->op is `GGML_OP_GROUP_NORM`. | |
* | |
* @attention eps defaults to 1e-6f. | |
*/ | |
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the accumulation of tensors using the CANN backend. | |
* | |
* @details This function performs an accumulation operation on two tensors. | |
* Depending on the `inplace` flag, it either updates the destination | |
* tensor `dst` in place by adding `alpha * src1` to it, or it creates | |
* a new tensor as the result of `src0 + alpha * src1` and stores it in | |
* `dst`. | |
* The operation is defined as: | |
* \f[ | |
* dst = src0 + alpha \times src1 | |
* \f] | |
* if `inplace` is `true`, `src0` is equal to 'dst'. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the accumulated values will be stored. | |
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`. | |
*/ | |
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the sum of elements along the last dimension of a ggml tensor | |
* using the CANN backend. | |
* | |
* @details This function performs a reduction sum operation along the last | |
* dimension of the input tensor `src`. The result of the sum is stored | |
* in the destination tensor `dst`. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the reduced values will be stored。 | |
* dst->op is `GGML_OP_SUM_ROWS`. | |
* | |
* @attention `reduce_dims` defaults to 3, which means the last dimension. | |
*/ | |
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using | |
* the CANN backend. | |
* | |
* @details This function performs upsampling of the input tensor `src` using | |
* nearest neighbor interpolation. The upsampling is applied to the | |
* height and width dimensions (last two dimensions) of the tensor. The | |
* result is stored in the destination tensor `dst`, which must have | |
* the appropriate dimensions for the upsampled output. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the upsampled values will be stored. | |
* dst->op is `GGML_OP_UPSCALE`. | |
*/ | |
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst); | |
/** | |
* @brief Pads a ggml tensor to match the dimensions of the destination tensor | |
* using the CANN backend. | |
* | |
* @details This function pads the input tensor `src` so that it matches the | |
* dimensions of the destination tensor `dst`. The amount of padding | |
* is calculated based on the difference in sizes between `src` and | |
* `dst` along each dimension. The padded tensor is stored in `dst`. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor, which specifies the target dimensions for | |
* padding. dst->op is `GGML_OP_PAD`. | |
*/ | |
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN | |
* backend. | |
* | |
* @details This function dispatches the execution of a 2D pooling operation on | |
* the input tensor `dst`. The type of pooling (average or max) is | |
* determined by the `op` parameter, which is read from the operation | |
* parameters of `dst`. The function supports average pooling | |
* (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an | |
* invalid operation is encountered, the function asserts a failure. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor on which the pooling operation is to be | |
* performed. dst->op is `GGML_OP_POOL_2D`. | |
*/ | |
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Duplicates a ggml tensor using the CANN backend. | |
* | |
* @details This function duplicates the contents of the source tensor `src` to | |
* the destination tensor `dst`. The function supports various tensor | |
* types and configurations, including handling of extra data, type | |
* conversions, and special cases for contiguous and non-contiguous | |
* tensors. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the duplicated data will be stored. | |
* dst->op is `GGML_OP_DUP` | |
* | |
* @attention Only support Fp16/FP32. Not support when src and dst have | |
* different shape and dst is no-contiguous. | |
* @note: This func need to simplify. | |
*/ | |
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor | |
* using the CANN backend. | |
* | |
* @details This function applies RMS normalization to the input tensor `src` | |
* and stores the result in the destination tensor `dst`. RMS | |
* normalization involves computing the root mean square of the input | |
* tensor along a specified dimension and then dividing each element of | |
* the tensor by this value, adjusted by a small epsilon value to | |
* prevent division by zero. | |
* The operation is defined as: | |
* \f[ | |
* \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i, | |
* \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s} | |
* \f] | |
* `eps` is in dst->op_params. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the normalized values will be stored. | |
* dst->op is `GGML_OP_RMS_NORM`. | |
*/ | |
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies a diagonal mask to the tensor with a specified value. | |
* | |
* @details This function creates a mask tensor filled with ones, then applies | |
* an upper triangular and lower triangular operation to it based on | |
* the number of past elements specified. Afterward, it adds the masked | |
* tensor to the destination tensor in-place. | |
* | |
* @param ctx The backend CANN context used for operations. | |
* @param dst The destination tensor where the result will be stored. dst->op is | |
* `GGML_OP_DIAG_MASK` | |
* @param value The value to use for masking. | |
*/ | |
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value); | |
/** | |
* @brief Performs an image-to-column transformation on the input tensor. | |
* | |
* @details This function takes an input tensor and applies an image-to-column | |
* operation, converting spatial dimensions into column-like | |
* structures suitable for convolutional operations. It supports both | |
* half-precision (F16) and single-precision (F32) floating-point data | |
* types. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor that stores the result of the operation. | |
* dst->op is `GGML_OP_IM2COL`. | |
*/ | |
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes time step embeddings using sine and cosine functions. | |
* | |
* @details This function calculates time step embeddings by applying sine and | |
* cosine transformations to a given input tensor, which is typically | |
* used in temporal models like diffusion models or transformers to | |
* encode time information effectively. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the result of the embedding operation | |
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`. | |
*/ | |
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
// @see ggml_cann_dup. | |
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the softmax activation with optional masking. | |
* | |
* @details This function computes the softmax activation over the input tensor, | |
* optionally applying a mask and scaling factor. It supports both FP16 | |
* and FP32 data types and can handle masking by broadcasting the mask | |
* across rows if necessary. | |
* The function performs the following steps: | |
* 1. Multiplies the input tensor by a scale factor. | |
* 2. Optionally casts the mask tensor to FP32 if it is in FP16 format. | |
* 3. Broadcasts the mask tensor if its dimensions do not match the | |
* input tensor's dimensions. | |
* 4. Adds the mask to the scaled input tensor. | |
* 5. Applies the softmax activation function along the specified | |
* dimension. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the result will be stored. dst->op is | |
* `GGML_OP_SOFTMAX`. | |
*/ | |
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Extracts specific rows from a tensor based on indices. | |
* | |
* @details This function retrieves rows from a source tensor src0 according to | |
* the indices provided in another tensor src1 and stores the result in | |
* a destination tensor (\p dst). It supports different data types | |
* including F32, F16, Q4_0, and Q8_0. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the extracted rows will be stored. | |
* dst->op is `GGML_OP_GET_ROWS`. | |
*/ | |
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Executes matrix multiplication for the given tensor. | |
* | |
* @details This function performs matrix multiplication on the source tensors | |
* associated with the destination tensor. It supports matrix | |
* multiplication F32, F16, and Q8_0. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor for storing the result of the matrix | |
* multiplication. dst->op is `GGML_OP_MUL_MAT`. | |
*/ | |
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor. | |
* | |
* @details This function implements the RoPE mechanism, which is a method to | |
* encode positional information into sequence data, particularly | |
* useful in transformer models. It supports both F32 and F16 data | |
* types. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the RoPE-transformed data will be | |
* stored. dst->op is `GGML_OP_ROPE`. | |
* | |
* @note The function currently does not support cases where the n_dims is less | |
* than the input tensor's first dimension. | |
* @note The function currently does not support cases where the freq_factors is | |
* not NULL. | |
* @note The function currently does not support cases where the ext_factor is | |
* not equal 0. | |
* @note The function currently does not support cases where the freq_scale is | |
* not equal 1. | |
*/ | |
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*, | |
aclTensor*, uint64_t*, aclOpExecutor**), | |
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)> | |
void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; | |
ggml_tensor* src1 = dst->src[1]; | |
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); | |
aclTensor* acl_src0; | |
aclTensor* acl_src1; | |
aclTensor* acl_dst; | |
// Need bcast | |
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) { | |
BCAST_SHAPE(src0, src1) | |
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0)); | |
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1)); | |
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0)); | |
} else { | |
acl_src0 = ggml_cann_create_tensor(src0); | |
acl_src1 = ggml_cann_create_tensor(src1); | |
acl_dst = ggml_cann_create_tensor(dst); | |
} | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize, | |
&executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
aclrtStream main_stream = ctx.stream(); | |
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream)); | |
ACL_CHECK(aclDestroyTensor(acl_src0)); | |
ACL_CHECK(aclDestroyTensor(acl_src1)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
// Activation functions template. | |
template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*, | |
aclOpExecutor**), | |
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, | |
const aclrtStream)> | |
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(src->type == GGML_TYPE_F32); | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
aclrtStream main_stream = ctx.stream(); | |
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
// Activation functions template for const aclTensors. | |
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*, | |
uint64_t*, aclOpExecutor**), | |
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, | |
const aclrtStream)> | |
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(src->type == GGML_TYPE_F32); | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
aclrtStream main_stream = ctx.stream(); | |
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |