Spaces:
Sleeping
Sleeping
struct ggml_backend_blas_context { | |
int n_threads = GGML_DEFAULT_N_THREADS; | |
std::unique_ptr<char[]> work_data; | |
size_t work_size = 0; | |
std::vector<std::future<void>> tasks; | |
}; | |
// helper function to determine if it is better to use BLAS or not | |
// for large matrices, BLAS is faster | |
static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) { | |
const struct ggml_tensor * src0 = dst->src[0]; | |
const struct ggml_tensor * src1 = dst->src[1]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne0 = dst->ne[0]; | |
const int64_t ne1 = dst->ne[1]; | |
// TODO: find the optimal values for these | |
if (ggml_is_contiguous(src0) && | |
ggml_is_contiguous(src1) && | |
src1->type == GGML_TYPE_F32 && | |
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { | |
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ | |
return true; | |
} | |
return false; | |
} | |
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) { | |
const struct ggml_tensor * src0 = dst->src[0]; | |
const struct ggml_tensor * src1 = dst->src[1]; | |
GGML_TENSOR_BINARY_OP_LOCALS | |
const enum ggml_type type = src0->type; | |
GGML_ASSERT(ne0 == ne01); | |
GGML_ASSERT(ne1 == ne11); | |
GGML_ASSERT(ne2 == ne12); | |
GGML_ASSERT(ne3 == ne13); | |
// we don't support permuted src0 or src1 | |
GGML_ASSERT(nb00 == ggml_type_size(type)); | |
GGML_ASSERT(nb10 == ggml_type_size(src1->type)); | |
// dst cannot be transposed or permuted | |
GGML_ASSERT(nb0 == sizeof(float)); | |
GGML_ASSERT(nb0 <= nb1); | |
GGML_ASSERT(nb1 <= nb2); | |
GGML_ASSERT(nb2 <= nb3); | |
// broadcast factors | |
const int64_t r2 = ne12/ne02; | |
const int64_t r3 = ne13/ne03; | |
const int64_t ne_plane = ne01*ne00; | |
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float); | |
if (ctx->work_size < desired_wsize) { | |
ctx->work_data.reset(new char[desired_wsize]); | |
ctx->work_size = desired_wsize; | |
} | |
void * wdata = ctx->work_data.get(); | |
// convert src0 to float | |
if (type != GGML_TYPE_F32) { | |
ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type); | |
ggml_to_float_t const to_float = type_traits.to_float; | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
const void * x = (char *) src0->data + i02*nb02 + i03*nb03; | |
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane; | |
const int min_cols_per_thread = 4096; | |
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1); | |
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1); | |
for (int64_t i01 = 0; i01 < ne01; i01++) { | |
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); | |
} | |
for (int i = 1; i < n_threads; i++) { | |
const int64_t start = i*ne01/n_threads; | |
const int64_t end = (i + 1)*ne01/n_threads; | |
if (start < end) { | |
ctx->tasks.push_back(std::async(std::launch::async, [=]() { | |
for (int64_t i01 = start; i01 < end; i01++) { | |
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); | |
} | |
})); | |
} | |
} | |
{ | |
// reuse the current thread for the first task | |
const int64_t start = 0; | |
const int64_t end = ne01/n_threads; | |
for (int64_t i01 = start; i01 < end; i01++) { | |
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); | |
} | |
} | |
} | |
} | |
// wait for all tasks to finish | |
for (auto & task : ctx->tasks) { | |
task.get(); | |
} | |
ctx->tasks.clear(); | |
} | |
openblas_set_num_threads(ctx->n_threads); | |
bli_thread_set_num_threads(ctx->n_threads); | |
nvpl_blas_set_num_threads(ctx->n_threads); | |
for (int64_t i13 = 0; i13 < ne13; i13++) { | |
for (int64_t i12 = 0; i12 < ne12; i12++) { | |
const int64_t i03 = i13/r3; | |
const int64_t i02 = i12/r2; | |
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); | |
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13); | |
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); | |
if (type != GGML_TYPE_F32) { | |
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane; | |
} | |
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, | |
ne1, ne01, ne10, | |
1.0f, y, ne10, | |
x, ne00, | |
0.0f, d, ne01); | |
} | |
} | |
} | |
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) { | |
const struct ggml_tensor * src0 = dst->src[0]; | |
const struct ggml_tensor * src1 = dst->src[1]; | |
GGML_TENSOR_BINARY_OP_LOCALS | |
GGML_ASSERT(ne0 == ne00); | |
GGML_ASSERT(ne1 == ne10); | |
GGML_ASSERT(ne2 == ne02); | |
GGML_ASSERT(ne02 == ne12); | |
GGML_ASSERT(ne3 == ne13); | |
GGML_ASSERT(ne03 == ne13); | |
// we don't support permuted src0 or src1 | |
GGML_ASSERT(nb00 == sizeof(float)); | |
// dst cannot be transposed or permuted | |
GGML_ASSERT(nb0 == sizeof(float)); | |
// GGML_ASSERT(nb0 <= nb1); | |
// GGML_ASSERT(nb1 <= nb2); | |
// GGML_ASSERT(nb2 <= nb3); | |
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor) | |
// src0: (k,n) | |
// src1: (k,m) | |
// dst: (m,n) | |
// | |
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f) | |
// Also expressed as (major,minor) | |
// a: (m,k): so src1 transposed | |
// b: (k,n): so src0 | |
// c: (m,n) | |
// | |
// However, if ggml_is_transposed(src1) is true, then | |
// src1->data already contains a transposed version, so sgemm mustn't | |
// transpose it further. | |
int n = src0->ne[0]; | |
int k = src0->ne[1]; | |
int m = src1->ne[0]; | |
CBLAS_TRANSPOSE transposeA; | |
int lda; | |
if (!ggml_is_transposed(src1)) { | |
transposeA = CblasTrans; | |
lda = m; | |
} else { | |
transposeA = CblasNoTrans; | |
lda = k; | |
} | |
float * a = (float *) ((char *) src1->data); | |
float * b = (float *) ((char *) src0->data); | |
float * c = (float *) ((char *) dst->data); | |
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n); | |
GGML_UNUSED(ctx); | |
} | |
// backend interface | |
GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) { | |
return "BLAS"; | |
GGML_UNUSED(backend); | |
} | |
GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) { | |
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; | |
delete ctx; | |
delete backend; | |
} | |
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) { | |
return ggml_backend_cpu_buffer_type(); | |
GGML_UNUSED(backend); | |
} | |
GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; | |
for (int i = 0; i < cgraph->n_nodes; i++) { | |
struct ggml_tensor * node = cgraph->nodes[i]; | |
switch (node->op) { | |
case GGML_OP_MUL_MAT: | |
ggml_backend_blas_mul_mat(ctx, node); | |
break; | |
case GGML_OP_OUT_PROD: | |
ggml_backend_blas_out_prod(ctx, node); | |
break; | |
case GGML_OP_NONE: | |
case GGML_OP_RESHAPE: | |
case GGML_OP_VIEW: | |
case GGML_OP_PERMUTE: | |
case GGML_OP_TRANSPOSE: | |
break; | |
default: | |
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node)); | |
} | |
} | |
return GGML_STATUS_SUCCESS; | |
GGML_UNUSED(backend); | |
} | |
GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { | |
const struct ggml_tensor * src0 = op->src[0]; | |
const struct ggml_tensor * src1 = op->src[1]; | |
return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) || | |
(op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 && | |
op->src[1]->type == GGML_TYPE_F32 && | |
ggml_is_matrix(src0) && | |
ggml_is_matrix(src1) && | |
ggml_is_contiguous(src0) && | |
(ggml_is_contiguous(src1) || ggml_is_transposed(src1))); | |
GGML_UNUSED(backend); | |
} | |
GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { | |
return ggml_backend_buft_is_host(buft); | |
GGML_UNUSED(backend); | |
} | |
static struct ggml_backend_i blas_backend_i = { | |
/* .get_name = */ ggml_backend_blas_name, | |
/* .free = */ ggml_backend_blas_free, | |
/* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type, | |
/* .set_tensor_async = */ NULL, | |
/* .get_tensor_async = */ NULL, | |
/* .cpy_tensor_async = */ NULL, | |
/* .synchronize = */ NULL, | |
/* .graph_plan_create = */ NULL, | |
/* .graph_plan_free = */ NULL, | |
/* .graph_plan_update = */ NULL, | |
/* .graph_plan_compute = */ NULL, | |
/* .graph_compute = */ ggml_backend_blas_graph_compute, | |
/* .supports_op = */ ggml_backend_blas_supports_op, | |
/* .supports_buft = */ ggml_backend_blas_supports_buft, | |
/* .offload_op = */ NULL, | |
/* .event_new = */ NULL, | |
/* .event_free = */ NULL, | |
/* .event_record = */ NULL, | |
/* .event_wait = */ NULL, | |
/* .event_synchronize = */ NULL, | |
}; | |
static ggml_guid_t ggml_backend_blas_guid(void) { | |
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d }; | |
return &guid; | |
} | |
ggml_backend_t ggml_backend_blas_init(void) { | |
ggml_backend_blas_context * ctx = new ggml_backend_blas_context; | |
ggml_backend_t backend = new ggml_backend { | |
/* .guid = */ ggml_backend_blas_guid(), | |
/* .interface = */ blas_backend_i, | |
/* .context = */ ctx, | |
}; | |
if (openblas_get_parallel() != OPENBLAS_OPENMP) { | |
fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__); | |
} | |
fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__); | |
return backend; | |
} | |
GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) { | |
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid()); | |
} | |
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) { | |
GGML_ASSERT(ggml_backend_is_blas(backend_blas)); | |
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context; | |
ctx->n_threads = n_threads; | |
} | |