Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
import os | |
from mesh.smpl2mesh import SMPL2Mesh | |
from skeleton import SkeletonAMASS, convert2humanml | |
from mesh.io import save_obj, to_mesh | |
from skeleton2smpl.skeleton2smpl import Skeleton2Obj | |
import json | |
def get_humanml_motion(npy_file, skeleton, remove_global_translation=False): | |
motion = torch.from_numpy(np.load(npy_file, allow_pickle=True)) | |
if remove_global_translation: | |
#remove hip motion | |
motion = motion - motion[..., 0:1, :] | |
humanml_motion = convert2humanml( | |
motion, skeleton.LANDMARKS, skeleton.TO_HUMANML_NAMES | |
) | |
return humanml_motion | |
def save_mesh(vertices, faces, npy_file): | |
def npy_path_to_obj_path(npy_path: str) -> str: | |
return os.path.join(os.path.dirname(npy_path) , f"{npy_path}_obj") | |
results_dir = npy_path_to_obj_path(npy_file) | |
os.makedirs(results_dir, exist_ok=True) | |
# create obs_obj and pred_obj folders | |
obs_obj_dir = os.path.join(results_dir, "obs_obj") | |
pred_obj_dir = os.path.join(results_dir, "pred_obj") | |
os.makedirs(obs_obj_dir, exist_ok=True) | |
os.makedirs(pred_obj_dir, exist_ok=True) | |
for frame_i in range(vertices.shape[-1]): | |
# first 30 frames save to obs_obj/ | |
if frame_i < 30: | |
file_path = os.path.join(results_dir, f"obs_obj/frame{frame_i:03d}.obj") | |
else: | |
file_path = os.path.join(results_dir, f"pred_obj/frame{frame_i:03d}.obj") | |
mesh = to_mesh(vertices[..., frame_i], faces) | |
save_obj(mesh, file_path) | |
print(f"Saved obj files to [{results_dir}]") | |
def main(): | |
test_directory = '/usr/wiss/curreli/work/my_exps/final_predictions_storage/hmp/visuals_50samples/amass/SkeletonDiffusion/test_optimization' | |
num_smplify_iters = 20 | |
device = "cuda" | |
# Load the dictionary of arrays from the npz file | |
output_file = "src_joints2smpl_demo/obs_data.npz" | |
loaded_data = np.load(output_file, allow_pickle=True) | |
rot_motions_obs = loaded_data["rot_motions_obs"] | |
smpl_dict_obs = loaded_data['smpl_dict_obs'].item() | |
smpl_dict_obs = {k: torch.from_numpy(v).to(device) for k,v in smpl_dict_obs.items()} | |
print("Loaded observation data from npz file.") | |
skeleton = SkeletonAMASS | |
skeleton2obj = Skeleton2Obj( | |
device=device, num_smplify_iters=num_smplify_iters, | |
smpl_model_dir="./models/body_models/", #path to smpl body models | |
gmm_model_dir="./models/joint2smpl_models/", #path to gmm model | |
) | |
# get all the npy files in the directory | |
pred_files = ['pred_closest_GT.npy'] | |
pred_motions = torch.cat([get_humanml_motion(npy_file, skeleton=skeleton, remove_global_translation=True) for npy_file in pred_files], dim=0) | |
pred_motions = pred_motions.view(-1, 22, 3).to(device) | |
init_params = {} | |
init_params["betas"] = smpl_dict_obs["betas"][-1].unsqueeze(0).expand(pred_motions.shape[0], -1).to(device) | |
init_params["pose"] = smpl_dict_obs["pose"][-1].unsqueeze(0).expand(pred_motions.shape[0], -1, -1).view(pred_motions.shape[0], -1).to(device) | |
init_params["cam"] = smpl_dict_obs["cam"][-1].unsqueeze(0).expand(pred_motions.shape[0], -1, -1).to(device) | |
rot_motions, smpl_dict = skeleton2obj.convert_motion_2smpl(pred_motions, hmp=True, init_params=init_params, fix_betas=True) | |
smpl2mesh = SMPL2Mesh(device) | |
vertices, faces = smpl2mesh.convert_smpl_to_mesh(rot_motions, pred_motions) | |
pred_files = [('pred_closest_GT.npy')] | |
vertices = vertices.reshape(*vertices.shape[:2], len(pred_files), -1) | |
for v, npy_file in zip(np.moveaxis(vertices, 2, 0), pred_files): | |
save_mesh(v, faces, npy_file) | |
if __name__ == "__main__": | |
main() | |