Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import json | |
import socket | |
import tempfile | |
import pathlib | |
from dataclasses import dataclass | |
from typing import List, Dict, Any | |
import pickle | |
import cv2 | |
import torch | |
import numpy as np | |
import imageio | |
import gradio as gr | |
import spaces | |
import smplx | |
import pyrender | |
import trimesh | |
import trimesh.transformations as tra | |
import requests | |
from download_precomputed import download_and_extract_precomputed | |
# if intermediate_results/8_kid_crossing doesn't exist, download it | |
if not os.path.exists('intermediate_results/8_kid_crossing'): | |
download_and_extract_precomputed() | |
# Constants and configuration | |
CHECKPOINT_PATH = './models/checkpoint_150.pt' | |
NUM_SAMPLES = 50 | |
DISPLAYED_PREDS = 3 | |
FRAME_LIMIT = 30 | |
FPS = 60 | |
DESCRIPTION = "# SkeletonDiffusion Demo" | |
# Create necessary directories | |
for dir_name in ['downloads', 'predictions', 'vis', 'intermediate_results', 'outputs', 'assets']: | |
os.makedirs(dir_name, exist_ok=True) | |
# Create a simple loading image if it doesn't exist | |
LOADING_IMAGE_PATH = os.path.join('assets', 'loading.png') | |
if not os.path.exists(LOADING_IMAGE_PATH): | |
# Create a simple loading image with text | |
img = np.zeros((200, 400, 3), dtype=np.uint8) | |
img.fill(255) # White background | |
cv2.putText(img, "Processing...", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) | |
cv2.putText(img, "Please wait", (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) | |
cv2.imwrite(LOADING_IMAGE_PATH, img) | |
# Available options for displayed predictions | |
DISPLAYED_PREDS_OPTIONS = [2, 3, 4, 5, 6] | |
# Fix display and setup issues | |
os.environ['PYOPENGL_PLATFORM'] = 'egl' | |
os.system('export IMAGEMAGICK_BINARY=./magick') | |
os.system('bash ./SkeletonDiffusion_demo/setup_headless.bash') | |
# Download ImageMagick if not present | |
MAGICK_PATH = "./magick" | |
if not os.path.exists(MAGICK_PATH): | |
response = requests.get("https://imagemagick.org/archive/binaries/magick", stream=True) | |
if response.status_code == 200: | |
with open(MAGICK_PATH, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
if chunk: | |
f.write(chunk) | |
print(f"Download completed and saved as '{MAGICK_PATH}'") | |
else: | |
print(f"Download failed with status code: {response.status_code}") | |
os.system('chmod +x ./magick') | |
# Setup device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Local imports | |
import SkeletonDiffusion_demo.plot_several_meshes as plot_several_meshes | |
import SkeletonDiffusion_demo.combine_video as combine | |
from SkeletonDiffusion.src.data.skeleton import create_skeleton | |
from SkeletonDiffusion.src.eval_prepare_model import get_prediction, load_model_config_exp, prepare_model | |
from src_joints2smpl_demo.joints2smpl.convert_joints2smpl import process_motion | |
from SkeletonDiffusion.src.metrics.ranking import get_closest_and_nfurthest_maxapd | |
class SMPLParams: | |
"""Data structure to hold SMPL parameters.""" | |
global_orient: torch.Tensor | |
body_pose: torch.Tensor | |
betas: torch.Tensor | |
transl: torch.Tensor | |
joints3d: torch.Tensor | |
def handle_video_input(video_file: str) -> str: | |
"""Handle video input from either a local file or YouTube URL. | |
Args: | |
video_file: Path to local video file | |
Returns: | |
str: Path to the video file | |
""" | |
if video_file: | |
return video_file | |
return None | |
def correct_vertices(vertices: np.ndarray) -> np.ndarray: | |
"""Correct SMPL vertices to convert from SMPL to renderer coordinate system. | |
Applies a rotation about the Y-axis by 180 degrees so that the original +X axis | |
(face direction) is transformed to the -Z axis. | |
Args: | |
vertices: SMPL vertices in shape (1, N, 3) | |
Returns: | |
np.ndarray: Corrected vertices in shape (1, N, 3) | |
""" | |
angle = np.radians(180) | |
R = tra.rotation_matrix(angle, [1, 0, 0]) | |
vertices_homo = np.hstack([vertices[0], np.ones((vertices[0].shape[0], 1))]) | |
vertices_corrected = (R @ vertices_homo.T).T | |
return vertices_corrected[:, :3].reshape(1, -1, 3) | |
def render_smpl(vertices: np.ndarray, width: int, height: int) -> np.ndarray: | |
"""Render SMPL 3D model using PyRender. | |
Args: | |
vertices: SMPL vertices in shape (1, N, 3) | |
width: Output image width | |
height: Output image height | |
Returns: | |
np.ndarray: Rendered image in BGR format | |
""" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
smpl_model = smplx.create("./models/SMPL_NEUTRAL.pkl", model_type="smpl", gender="neutral").to(device) | |
vertices_corrected = correct_vertices(vertices) | |
mesh = trimesh.Trimesh(vertices_corrected[0], smpl_model.faces) | |
scene = pyrender.Scene(bg_color=[1.0, 1.0, 1.0, 0.9]) | |
mesh_node = pyrender.Mesh.from_trimesh(mesh) | |
scene.add(mesh_node) | |
camera = pyrender.OrthographicCamera(xmag=1.0, ymag=1.0) | |
camera_pose = np.eye(4) | |
camera_pose[:3, 3] = [0, 0, 5.0] # distance = 5.0 | |
scene.add(camera, pose=camera_pose) | |
renderer = pyrender.OffscreenRenderer(width, height) | |
color, _ = renderer.render(scene) | |
return cv2.cvtColor(color, cv2.COLOR_RGB2BGR) | |
def save_intermediate_results(video_name: str, results: Dict[str, Any], displayed_preds: int = DISPLAYED_PREDS): | |
"""Save intermediate results for a video. | |
Args: | |
video_name: Name of the video file | |
results: Dictionary containing intermediate results | |
displayed_preds: Number of displayed predictions | |
""" | |
base_name = os.path.splitext(os.path.basename(video_name))[0] | |
results_dir = os.path.join('intermediate_results', base_name) | |
os.makedirs(results_dir, exist_ok=True) | |
# Save results with displayed_preds in filename | |
results_path = os.path.join(results_dir, f'results_{displayed_preds}.pkl') | |
with open(results_path, 'wb') as f: | |
pickle.dump(results, f) | |
def load_intermediate_results(video_name: str, displayed_preds: int = DISPLAYED_PREDS) -> Dict[str, Any]: | |
"""Load intermediate results for a video. | |
Args: | |
video_name: Name of the video file | |
displayed_preds: Number of displayed predictions | |
Returns: | |
Dictionary containing intermediate results or None if not found | |
""" | |
base_name = os.path.splitext(os.path.basename(video_name))[0] | |
results_path = os.path.join('intermediate_results', base_name, f'results_{displayed_preds}.pkl') | |
if os.path.exists(results_path): | |
# Set default tensor type to CPU before loading | |
torch.set_default_tensor_type(torch.FloatTensor) | |
with open(results_path, 'rb') as f: | |
# Use map_location to ensure tensors are loaded on CPU | |
results = torch.load(f, map_location='cpu') | |
# Reset default tensor type | |
torch.set_default_tensor_type(torch.cuda.FloatTensor) | |
return results | |
return None | |
def process_video_gpu(video_file: str, displayed_preds: int = DISPLAYED_PREDS) -> tuple: | |
"""GPU version of process_video that does the actual processing.""" | |
import time | |
start_time = time.time() | |
# Load models | |
model_start_time = time.time() | |
smpl_model = smplx.create("./models/SMPL_NEUTRAL.pkl", model_type="smpl", gender="neutral").to(device) | |
nlf_model = torch.jit.load("./models/nlf_l_multi.torchscript").to(device).eval() | |
print(f"Time for model loading: {time.time() - model_start_time:.2f}s") | |
# Handle video input | |
input_start_time = time.time() | |
input_path = handle_video_input(video_file) | |
if not input_path: | |
return None, None | |
print(f"Time for video input handling: {time.time() - input_start_time:.2f}s") | |
# Create output path in outputs directory | |
base_name = os.path.splitext(os.path.basename(video_file))[0] | |
output_path = os.path.join('outputs', f'{base_name}_smpl_{displayed_preds}.gif') | |
# Process frames | |
frame_start_time = time.time() | |
cap = cv2.VideoCapture(input_path) | |
frame_count = 0 | |
smpl_params_list = [] | |
nlf_frames = [] # Store NLF detection frames | |
# Initialize time counters | |
total_nlf_time = 0 | |
total_smpl_time = 0 | |
total_frame_time = 0 | |
while cap.isOpened() and frame_count < FRAME_LIMIT: | |
frame_process_start = time.time() | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
image_tensor = torch.from_numpy(frame_rgb).permute(2, 0, 1).int().to(device) | |
# SMPL detection | |
nlf_start_time = time.time() | |
with torch.inference_mode(): | |
pred = nlf_model.detect_smpl_batched(image_tensor.unsqueeze(0)) | |
pose_params = pred["pose"][0].cpu().numpy() | |
betas = pred["betas"][0].cpu().numpy() | |
transl = pred["trans"][0].cpu().numpy() | |
joints3d = pred['joints3d'][0].cpu().numpy() | |
nlf_time = time.time() - nlf_start_time | |
total_nlf_time += nlf_time | |
print(f"Time for NLF model inference: {nlf_time:.2f}s") | |
if pose_params.shape[0] == 0: | |
print(f"No SMPL detected in frame {frame_count}") | |
nlf_frames.append(frame_rgb) | |
continue | |
if pose_params.shape[0] > 0: | |
# SMPL model | |
render_start_time = time.time() | |
smpl_param = SMPLParams( | |
global_orient=torch.tensor(pose_params[:, :3]).to(device), | |
body_pose=torch.tensor(pose_params).to(device), | |
betas=torch.tensor(betas).to(device), | |
transl=torch.tensor(transl).to(device), | |
joints3d=torch.tensor(joints3d[:, 0:22, :3]).to(device), | |
) | |
output_smpl = smpl_model( | |
global_orient=torch.tensor(pose_params[:, :3]).to(device), | |
body_pose=torch.tensor(pose_params[:, 3:]).to(device), | |
betas=torch.tensor(betas).to(device), | |
transl=torch.tensor(transl).to(device), | |
joints3d=torch.tensor(joints3d[:, 0:66]).to(device), | |
) | |
smpl_time = time.time() - render_start_time | |
total_smpl_time += smpl_time | |
print(f"Time for SMPL model: {smpl_time:.2f}s") | |
smpl_params_list.append(smpl_param) | |
nlf_frames.append(frame_rgb) # Store original frame for NLF visualization | |
frame_count += 1 | |
frame_time = time.time() - frame_process_start | |
total_frame_time += frame_time | |
print(f"Total time for frame {frame_count}: {frame_time:.2f}s") | |
cap.release() | |
gr.Info("Video-to-motion processing completed!") | |
print(f"\nTime statistics for {frame_count} frames:") | |
print(f"Average NLF model time per frame: {total_nlf_time/frame_count:.2f}s") | |
print(f"Average SMPL model time per frame: {total_smpl_time/frame_count:.2f}s") | |
print(f"Average total time per frame: {total_frame_time/frame_count:.2f}s") | |
print(f"Total time for all frame processing: {time.time() - frame_start_time:.2f}s") | |
# Serialize SMPL parameters | |
serial_start_time = time.time() | |
smpl_params_serialized = [ | |
{ | |
"global_orient": p.global_orient.tolist(), | |
"body_pose": p.body_pose.tolist(), | |
"betas": p.betas.tolist(), | |
"transl": p.transl.tolist(), | |
"joints3d": p.joints3d.tolist(), | |
} | |
for p in smpl_params_list | |
] | |
print(f"Time for parameter serialization: {time.time() - serial_start_time:.2f}s") | |
print(f"Total time: {time.time() - start_time:.2f}s") | |
# Save SMPL params as JSON | |
with open('smpl_params.json', 'w') as f: | |
json.dump(smpl_params_serialized, f) | |
# Save intermediate results | |
results = { | |
'output_path': output_path, | |
'smpl_params_serialized': smpl_params_serialized, | |
'nlf_frames': nlf_frames, | |
'smpl_params_list': smpl_params_list | |
} | |
save_intermediate_results(video_file, results, displayed_preds) | |
return output_path, smpl_params_serialized | |
def generate_motion_video_gpu(smpl_params_json: List[Dict[str, Any]], video_file: str, displayed_preds: int = DISPLAYED_PREDS) -> str: | |
"""GPU version of generate_motion_video that does the actual processing.""" | |
import time | |
start_time = time.time() | |
# Setup device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Create output path in outputs directory with displayed_preds in filename | |
base_name = os.path.splitext(os.path.basename(video_file))[0] | |
output_path = os.path.join('outputs', f'{base_name}_motion_{displayed_preds}.gif') | |
# Load input video frames | |
input_frames = [] | |
cap = cv2.VideoCapture(video_file) | |
frame_count = 0 | |
while cap.isOpened() and frame_count < FRAME_LIMIT: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
input_frames.append(frame) | |
frame_count += 1 | |
cap.release() | |
# Ensure we have exactly FRAME_LIMIT frames | |
if len(input_frames) < FRAME_LIMIT: | |
# Pad with the last frame if needed | |
last_frame = input_frames[-1] if input_frames else np.zeros((480, 640, 3), dtype=np.uint8) | |
input_frames.extend([last_frame] * (FRAME_LIMIT - len(input_frames))) | |
elif len(input_frames) > FRAME_LIMIT: | |
# Trim to FRAME_LIMIT frames | |
input_frames = input_frames[:FRAME_LIMIT] | |
# Deserialize JSON back into SMPLParams objects | |
smpl_params_list = [ | |
SMPLParams( | |
global_orient=torch.tensor(p["global_orient"]).to(device), | |
body_pose=torch.tensor(p["body_pose"]).to(device), | |
betas=torch.tensor(p["betas"]).to(device), | |
transl=torch.tensor(p["transl"]).to(device), | |
joints3d=torch.tensor(p["joints3d"]).to(device), | |
) | |
for p in smpl_params_json | |
] | |
print(f"Time for deserialization: {time.time() - start_time:.2f}s") | |
# Calculate number of frames for 0.5 seconds | |
# frames_for_half_second = int(FPS * 0.5) | |
frames_for_half_second = 30 | |
# Collect last 0.5 seconds of frames | |
obs = torch.stack([p.joints3d[0] for p in smpl_params_list[-frames_for_half_second:]]) | |
# Pad with first frame if needed | |
if len(obs) < frames_for_half_second: | |
padding = torch.stack([obs[0]] * (frames_for_half_second - len(obs))) | |
obs = torch.cat([padding, obs], dim=0) | |
# Load model and prepare data | |
model_start_time = time.time() | |
config, exp_folder = load_model_config_exp(CHECKPOINT_PATH) | |
config['checkpoint_path'] = CHECKPOINT_PATH | |
skeleton = create_skeleton(**config) | |
model, device, *_ = prepare_model(config, skeleton, **config) | |
# Convert from mm to m and prepare input | |
obs = obs / 1000.0 | |
obs = obs.reshape(1, frames_for_half_second, 22, 3).to(device) | |
obs = torch.stack([-obs[..., 2], obs[..., 0], -obs[..., 1]], dim=-1) | |
obs = obs - obs[..., 0:1, :] | |
obs_in = skeleton.tranform_to_input_space(obs).to(device) | |
# Get predictions | |
pred = get_prediction(obs_in, model, num_samples=NUM_SAMPLES, **config) | |
pred = torch.cat((torch.zeros(1, NUM_SAMPLES, pred.shape[2], 1, 3).to(device), pred), dim=3) | |
obs_in = torch.cat((torch.zeros(1, frames_for_half_second, 1, 3).to(device), obs_in), dim=2) | |
print(f"Time for model inference: {time.time() - model_start_time:.2f}s") | |
# Convert predictions to SMPL parameters | |
smpl_start_time = time.time() | |
print(f"Time for SMPL conversion: {time.time() - smpl_start_time:.2f}s") | |
# Prepare data for visualization | |
obs_in_50 = obs_in.unsqueeze(1).repeat(1, NUM_SAMPLES, 1, 1, 1) | |
obs_and_pred = torch.cat((obs_in_50, pred), dim=2) | |
# Save predictions | |
pred_np = obs_and_pred.cpu().numpy() | |
os.makedirs('predictions', exist_ok=True) | |
np.save('predictions/joints3d.npy', pred_np) | |
print(f"Joints3D data saved to predictions/joints3d.npy") | |
# Calculate metrics and select best samples | |
metric_start_time = time.time() | |
from SkeletonDiffusion.src.metrics.body_realism import limb_stretching_normed_rmse | |
limbstretching = limb_stretching_normed_rmse( | |
pred[..., 1:, :], | |
target=obs[0, ..., 1:, :].unsqueeze(0), | |
limbseq=skeleton.get_limbseq(), | |
reduction='persample', | |
obs_as_target=True | |
) | |
# Sort samples by limb stretching and take the half with smallest values | |
limbstretching_sorted, indices = torch.sort(limbstretching.squeeze(1), dim=-1, descending=False) | |
half_size = len(indices[0]) // 2 | |
best_half_indices = indices[0, :15] | |
# Get predictions for best half | |
y_pred = pred.squeeze(0)[best_half_indices] | |
y_gt = y_pred[0].unsqueeze(0) | |
# Use get_closest_and_nfurthest_maxapd to select diverse samples | |
_, _, top_indices = get_closest_and_nfurthest_maxapd(y_pred, y_gt, nsamples=displayed_preds) | |
print(f"Selected {len(best_half_indices)} samples with smallest limb stretching") | |
print(f"Selected {len(top_indices)} diverse samples from best half") | |
# Generate visualization | |
vis_start_time = time.time() | |
with torch.no_grad(): | |
# Create video-specific obj directory | |
obj_dir = os.path.join('outputs', f'{base_name}_obj/') | |
os.makedirs(obj_dir, exist_ok=True) | |
process_motion("smpl_params.json", "predictions/joints3d.npy", device=device, sorted_idx=top_indices, output_dir=obj_dir) | |
print(f"Checking obj_dir contents: {obj_dir}") | |
if os.path.exists(obj_dir): | |
print("Contents of obj_dir:") | |
for root, dirs, files in os.walk(obj_dir): | |
print(f"Directory: {root}") | |
print(f"Files: {files}") | |
print(f"Subdirectories: {dirs}") | |
plot_several_meshes.main(obj_dir, displayed_preds) | |
# Show completion message before combining video | |
gr.Info("Step 3/3: Combine GIFs") | |
# Save the motion video to the output path with input frames as picture-in-picture | |
output_path = combine.combine_video(obj_dir, output_path, input_frames, displayed_preds) | |
return output_path | |
def process_video(video_file: str, displayed_preds: int = DISPLAYED_PREDS) -> tuple: | |
"""Process input video to extract SMPL parameters and generate visualization.""" | |
# Check if we have pre-computed results | |
pre_computed = load_intermediate_results(video_file, displayed_preds) | |
if pre_computed is not None: | |
print("Using pre-computed results") | |
return pre_computed['output_path'], pre_computed['smpl_params_serialized'] | |
# If no pre-computed results, use GPU processing | |
return process_video_gpu(video_file, displayed_preds) | |
def generate_motion_video(smpl_params_json: List[Dict[str, Any]], video_file: str = None, displayed_preds: int = DISPLAYED_PREDS) -> str: | |
"""Generate a motion video from SMPL parameters.""" | |
if smpl_params_json is None: | |
raise ValueError("No SMPL parameters provided. Please process a video first.") | |
# Check if we have pre-computed results | |
if video_file: | |
pre_computed = load_intermediate_results(video_file, displayed_preds) | |
if pre_computed is not None and 'motion_video_path' in pre_computed: | |
print("Using pre-computed motion video") | |
return pre_computed['motion_video_path'] | |
# If no pre-computed results, use GPU processing | |
return generate_motion_video_gpu(smpl_params_json, video_file, displayed_preds) | |
def video_to_gif(video_path, gif_path, frame_limit=30): | |
"""Convert video to GIF with specified frame limit and smooth looping.""" | |
frames = [] | |
# lower resolution | |
reader = imageio.get_reader(video_path) | |
for i, frame in enumerate(reader): | |
if i >= frame_limit: | |
break | |
frames.append(frame) | |
# Set FPS to 15 for smooth looping of 30 frames (2 seconds per loop) | |
imageio.mimsave(gif_path, frames, fps=15, loop=0) # loop=0 means infinite loop | |
return gif_path | |
def concat_gifs_side_by_side(gif1_path, gif2_path, output_path): | |
"""Pad both GIFs to the same (max) height, center them vertically, then concatenate side by side.""" | |
gif1 = imageio.mimread(gif1_path) | |
gif2 = imageio.mimread(gif2_path) | |
# Ensure both GIFs have the same number of frames | |
if len(gif1) != len(gif2): | |
print(f"Warning: GIFs have different frame counts ({len(gif1)} vs {len(gif2)}). Adjusting to match.") | |
# Use the shorter length | |
min_frames = min(len(gif1), len(gif2)) | |
gif1 = gif1[:min_frames] | |
gif2 = gif2[:min_frames] | |
frames = [] | |
for f1, f2 in zip(gif1, gif2): | |
# Convert both frames to RGB if needed (handle RGBA with alpha channel) | |
if f1.shape[2] == 4: | |
f1 = f1[..., :3] | |
if f2.shape[2] == 4: | |
f2 = f2[..., :3] | |
h1, w1, c1 = f1.shape | |
h2, w2, c2 = f2.shape | |
max_h = max(h1, h2) | |
# Pad f1 to max_h, vertically centered | |
pad_top1 = (max_h - h1) // 2 | |
pad_bot1 = max_h - h1 - pad_top1 | |
f1_pad = np.pad(f1, ((pad_top1, pad_bot1), (0, 0), (0, 0)), mode='constant', constant_values=255) | |
# Pad f2 to max_h, vertically centered | |
pad_top2 = (max_h - h2) // 2 | |
pad_bot2 = max_h - h2 - pad_top2 | |
f2_pad = np.pad(f2, ((pad_top2, pad_bot2), (0, 0), (0, 0)), mode='constant', constant_values=255) | |
# Concatenate horizontally | |
frame = np.concatenate([f1_pad, f2_pad], axis=1) | |
frames.append(frame) | |
imageio.mimsave(output_path, frames, fps=15, loop=0) | |
return output_path | |
def create_gradio_interface(): | |
"""Create and configure the Gradio interface.""" | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
# Add user instructions | |
gr.Markdown(""" | |
Demo for the CVPR2025 paper "Nonisotropic Gaussian Diffusion for Realistic 3D Human Motion Prediction", available [here](https://ceveloper.github.io/publications/skeletondiffusion/). Codebase released on [GitHub](https://github.com/Ceveloper/SkeletonDiffusion/tree/main). | |
SkeletonDiffusion takes as input a sequence of 3D body joints coordinates, which not everyone has at disposal. In this demo, we use a publicly available model, Neural Localizer Fields ([NLF](https://istvansarandi.com/nlf/)) to extract 3D poses from a given input video. We feed the extracted poses to SkeletonDiffusion to generate corresponding future motions. Note that the poses extracted from the video are noisy and imperfect, but SkeletonDiffusion has been trained only with precise sensor data obtained in laboratory settings. | |
Despite never having seen noisy data and various real-world actions (ballet, basketball, etc.), SkeletonDiffusion can handle most cases reasonably! | |
### Instructions | |
1. Upload a video or select from examples | |
2. Choose whether to use precomputed results (if available) | |
3. Select the number of motion predictions to display (2-6) | |
4. Click "Run Skeleton Diffusion" to start | |
**Note:** | |
- SkeletonDiffusion requires less than half a second for a forward pass, but extracting the poses from RGB and rendering the output are time consuming | |
- Only the first 30 frames of the input video will be used | |
- The first 0.5 seconds of motion will be used to predict future motion | |
- Processing time depends on video length and selected number of predictions | |
- Precomputed results will be much faster if available | |
""") | |
with gr.Tabs(): | |
with gr.Tab("Video Processing"): | |
with gr.Row(): | |
input_video = gr.Video(label="Input Video", height=600) | |
with gr.Row(): | |
gr.Examples( | |
examples=sorted(pathlib.Path("downloads").glob("*.mp4")), | |
inputs=input_video, | |
cache_examples=False, | |
) | |
with gr.Row(): | |
use_precomputed = gr.Checkbox( | |
label="Use precomputed results if available", | |
value=True, | |
info="If checked, will use existing results instead of processing the video again" | |
) | |
displayed_preds = gr.Dropdown( | |
choices=DISPLAYED_PREDS_OPTIONS, | |
value=DISPLAYED_PREDS, | |
label="Number of displayed predictions", | |
info="Select how many motion predictions to display (2-6)" | |
) | |
with gr.Row(): | |
process_btn = gr.Button("Run Skeleton Diffusion") | |
# Two-column output: left=input, right=output | |
with gr.Row(): | |
with gr.Column(): | |
input_video_display = gr.Image(label="Input Video (Preview GIF)", height=600) | |
with gr.Column(): | |
output_video = gr.Image(label="Generated Motion", height=600) | |
# Download buttons | |
with gr.Row(): | |
with gr.Column(): | |
download_motion_btn = gr.Button("Download Motion Video") | |
download_motion_btn.click( | |
fn=lambda video_file, displayed_preds: os.path.join('outputs', f'{os.path.splitext(os.path.basename(video_file))[0]}_motion_{displayed_preds}.gif') if video_file else None, | |
inputs=[input_video, displayed_preds], | |
outputs=[gr.File(label="Download Motion Video")] | |
) | |
with gr.Column(): | |
download_data_btn = gr.Button("Download Motion Data (SMPL + Joints)") | |
download_data_btn.click( | |
fn=lambda video_file, displayed_preds: os.path.join('intermediate_results', os.path.splitext(os.path.basename(video_file))[0], f'results_{displayed_preds}.pkl') if video_file else None, | |
inputs=[input_video, displayed_preds], | |
outputs=[gr.File(label="Download Motion Data")] | |
) | |
def process_video_with_notification(video_file, use_precomputed, displayed_preds): | |
# Step 1: Show input video as GIF immediately with exactly 30 frames | |
gr.Info("Converting input video to preview GIF...") | |
gif_path = os.path.join(tempfile.gettempdir(), f"input_preview_{os.path.splitext(os.path.basename(video_file))[0]}.gif") | |
video_to_gif(video_file, gif_path, frame_limit=30) # Explicitly set to 30 frames | |
yield gif_path, LOADING_IMAGE_PATH | |
base_name = os.path.splitext(os.path.basename(video_file))[0] | |
output_path = os.path.join('outputs', f'{base_name}_motion_{displayed_preds}.gif') | |
obs_gif_path = os.path.join('outputs', f'{base_name}_obj', 'shadow_gif', 'obs_obj_tranp.gif') | |
concat_gif_path = os.path.join(tempfile.gettempdir(), f"concat_{base_name}.gif") | |
# If using precomputed and obs_obj_tranp.gif exists, show concatenated GIF immediately | |
if use_precomputed and os.path.exists(obs_gif_path): | |
concat_gifs_side_by_side(gif_path, obs_gif_path, concat_gif_path) | |
# Replace the preview with the concatenated GIF | |
yield concat_gif_path, LOADING_IMAGE_PATH | |
# ... continue with rest of workflow | |
# (The rest of the workflow remains unchanged) | |
if os.path.exists(output_path): | |
gr.Info("Found precomputed video.\nUsing existing results...") | |
yield concat_gif_path, output_path | |
return | |
# ... existing code ... | |
# If not precomputed, after obs_obj_tranp.gif is generated, show concatenated GIF | |
# Continue with the rest of the workflow as before | |
# Case 1: Not using precomputed results | |
if not use_precomputed: | |
gr.Info("Starting video processing with GPU...\nThis may take a few minutes.") | |
gr.Info("Step 1/3: Extracting SMPL parameters from video...") | |
_, smpl_params = process_video_gpu(video_file, displayed_preds) | |
# After SMPL extraction, check if obs_obj_tranp.gif exists and show concatenated GIF | |
if os.path.exists(obs_gif_path): | |
concat_gifs_side_by_side(gif_path, obs_gif_path, concat_gif_path) | |
yield concat_gif_path, LOADING_IMAGE_PATH | |
gr.Info("Step 2/3: Generating motion predictions...") | |
motion_gif = generate_motion_video_gpu(smpl_params, video_file, displayed_preds) | |
yield concat_gif_path, motion_gif | |
return | |
# If no precomputed video, check if we have enough GIFs to generate one | |
shadow_gif_dir = os.path.join('outputs', f'{base_name}_obj', 'shadow_gif') | |
if os.path.exists(shadow_gif_dir): | |
existing_gifs = [f for f in os.listdir(shadow_gif_dir) if f.endswith('_tranp.gif') and not f.startswith('obs')] | |
if len(existing_gifs) >= displayed_preds: | |
gr.Info(f"Found {len(existing_gifs)} existing GIFs.\nGenerating video from existing predictions...") | |
# Load input video frames for picture-in-picture | |
input_frames = [] | |
cap = cv2.VideoCapture(video_file) | |
frame_count = 0 | |
while cap.isOpened() and frame_count < FRAME_LIMIT: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
input_frames.append(frame) | |
frame_count += 1 | |
cap.release() | |
# Ensure we have exactly FRAME_LIMIT frames | |
if len(input_frames) < FRAME_LIMIT: | |
# Pad with the last frame if needed | |
last_frame = input_frames[-1] if input_frames else np.zeros((480, 640, 3), dtype=np.uint8) | |
input_frames.extend([last_frame] * (FRAME_LIMIT - len(input_frames))) | |
elif len(input_frames) > FRAME_LIMIT: | |
# Trim to FRAME_LIMIT frames | |
input_frames = input_frames[:FRAME_LIMIT] | |
# If obs_obj_tranp.gif exists, show concatenated GIF | |
if os.path.exists(obs_gif_path): | |
concat_gifs_side_by_side(gif_path, obs_gif_path, concat_gif_path) | |
gif_path = concat_gif_path | |
yield concat_gif_path, LOADING_IMAGE_PATH | |
# Generate video from existing GIFs | |
gr.Info("Combining predictions into final video...") | |
motion_gif = combine.combine_video( | |
os.path.join('outputs', f'{base_name}_obj'), | |
output_path, | |
input_frames, | |
displayed_preds | |
) | |
gr.Info("Processing complete!") | |
yield gif_path, motion_gif | |
return | |
# If we don't have enough GIFs, proceed with full processing | |
gr.Info("No precomputed results found.\nStarting full video processing...") | |
gr.Info("Step 1/3: Extracting SMPL parameters from video...") | |
_, smpl_params = process_video_gpu(video_file, displayed_preds) | |
gr.Info("Step 2/3: Generating motion predictions...") | |
motion_gif = generate_motion_video_gpu(smpl_params, video_file, displayed_preds) | |
# After SMPL extraction, check if obs_obj_tranp.gif exists and show concatenated GIF | |
if os.path.exists(obs_gif_path): | |
concat_gifs_side_by_side(gif_path, obs_gif_path, concat_gif_path) | |
yield concat_gif_path, LOADING_IMAGE_PATH | |
yield concat_gif_path, motion_gif | |
return | |
process_btn.click( | |
fn=process_video_with_notification, | |
inputs=[input_video, use_precomputed, displayed_preds], | |
outputs=[input_video_display, output_video] | |
) | |
return demo | |
if __name__ == "__main__": | |
# Get local IP address | |
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
s.connect(("8.8.8.8", 80)) | |
print(s.getsockname()[0]) | |
s.close() | |
# Create and launch interface | |
demo = create_gradio_interface() | |
print(demo.get_api_info()) | |
demo.launch(server_name="0.0.0.0", share=True) | |