Spaces:
Sleeping
Sleeping
Siyun He
commited on
Commit
·
f7d9130
1
Parent(s):
47fc75d
update results
Browse files- .DS_Store +0 -0
- classification.py +2 -3
- results.csv +1 -1
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
classification.py
CHANGED
@@ -34,7 +34,7 @@ def compute_glcm(image_path, ispath=True):
|
|
34 |
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
35 |
else:
|
36 |
img = image_path
|
37 |
-
# compute the GLCM properties. Distance =
|
38 |
glcm = graycomatrix(img, [3], [0, np.pi/4, np.pi/2, 3*np.pi/4], 256, symmetric=True, normed=True)
|
39 |
# extract the properties
|
40 |
contrast = graycoprops(glcm, 'contrast')
|
@@ -42,7 +42,6 @@ def compute_glcm(image_path, ispath=True):
|
|
42 |
energy = graycoprops(glcm, 'energy')
|
43 |
homogeneity = graycoprops(glcm, 'homogeneity')
|
44 |
# return the feature vector
|
45 |
-
# return [contrast[0][0], correlation[0][0], energy[0][0], homogeneity[0][0]]
|
46 |
# Flatten the arrays first
|
47 |
contrast_flat = contrast.flatten()
|
48 |
correlation_flat = correlation.flatten()
|
@@ -239,7 +238,7 @@ if __name__ == '__main__':
|
|
239 |
# Evaluate each classifier on the tesing set.
|
240 |
# Compare the results.
|
241 |
# Save the results to a CSV file.
|
242 |
-
results = pd.DataFrame({'
|
243 |
# Add the precision to the results
|
244 |
results['GLCM_precision'] = precision_score(y_test_glcm, y_pred_glcm, average='weighted')
|
245 |
results['LBP_precision'] = precision_score(y_test_lbp, y_pred_lbp, average='weighted')
|
|
|
34 |
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
35 |
else:
|
36 |
img = image_path
|
37 |
+
# compute the GLCM properties. Distance = 3, and 4 angles: 0, 45, 90, 135
|
38 |
glcm = graycomatrix(img, [3], [0, np.pi/4, np.pi/2, 3*np.pi/4], 256, symmetric=True, normed=True)
|
39 |
# extract the properties
|
40 |
contrast = graycoprops(glcm, 'contrast')
|
|
|
42 |
energy = graycoprops(glcm, 'energy')
|
43 |
homogeneity = graycoprops(glcm, 'homogeneity')
|
44 |
# return the feature vector
|
|
|
45 |
# Flatten the arrays first
|
46 |
contrast_flat = contrast.flatten()
|
47 |
correlation_flat = correlation.flatten()
|
|
|
238 |
# Evaluate each classifier on the tesing set.
|
239 |
# Compare the results.
|
240 |
# Save the results to a CSV file.
|
241 |
+
results = pd.DataFrame({'GLCM_accuracy': [accuracy_score(y_test_glcm, y_pred_glcm)], 'LBP_accuracy': [accuracy_score(y_test_lbp, y_pred_lbp)]})
|
242 |
# Add the precision to the results
|
243 |
results['GLCM_precision'] = precision_score(y_test_glcm, y_pred_glcm, average='weighted')
|
244 |
results['LBP_precision'] = precision_score(y_test_lbp, y_pred_lbp, average='weighted')
|
results.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
|
2 |
0.9333333333333333,0.9333333333333333,0.9411764705882353,0.9411764705882353
|
|
|
1 |
+
GLCM_accuracy,LBP_accuracy,GLCM_precision,LBP_precision
|
2 |
0.9333333333333333,0.9333333333333333,0.9411764705882353,0.9411764705882353
|