SivaResearch commited on
Commit
062f571
·
1 Parent(s): 0589a37

Added Files

Browse files
Files changed (6) hide show
  1. README.md +5 -6
  2. app.py +52 -0
  3. bike.jpg +0 -0
  4. car.jpg +0 -0
  5. food.jpg +0 -0
  6. requirements.txt +3 -0
README.md CHANGED
@@ -1,13 +1,12 @@
1
  ---
2
- title: Opensource ImageClassifer Combo
3
- emoji: 💻
4
- colorFrom: gray
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.23.0
8
  app_file: app.py
9
  pinned: false
10
- license: openrail
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Battle Of The Image Classifiers
3
+ emoji: 🐨
4
+ colorFrom: green
5
+ colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.16.1
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ model_names = [
5
+ "apple/mobilevit-small",
6
+ "facebook/deit-base-patch16-224",
7
+ "facebook/convnext-base-224",
8
+ "google/vit-base-patch16-224",
9
+ "google/mobilenet_v2_1.4_224",
10
+ "microsoft/resnet-50",
11
+ "microsoft/swin-base-patch4-window7-224",
12
+ "microsoft/beit-base-patch16-224",
13
+ "nvidia/mit-b0",
14
+ "shi-labs/nat-base-in1k-224",
15
+ "shi-labs/dinat-base-in1k-224",
16
+ ]
17
+
18
+
19
+ def process(image_file, top_k):
20
+ labels = []
21
+ for m in model_names:
22
+ p = pipeline("image-classification", model=m)
23
+ pred = p(image_file)
24
+ labels.append({x["label"]: x["score"] for x in pred[:top_k]})
25
+ return labels
26
+
27
+
28
+ # Inputs
29
+ image = gr.Image(type="filepath", label="Upload an image")
30
+ top_k = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Top k classes")
31
+
32
+ # Output
33
+ labels = [gr.Label(label=m) for m in model_names]
34
+
35
+ description = "This Space lets you quickly compare the most popular image classifiers available on the hub, including the recent NAT and DINAT models. All of them have been fine-tuned on the ImageNet-1k dataset. Anecdotally, the three sample images have been generated with a Stable Diffusion model :)"
36
+
37
+ iface = gr.Interface(
38
+ theme="huggingface",
39
+ description=description,
40
+ layout="horizontal",
41
+ fn=process,
42
+ inputs=[image, top_k],
43
+ outputs=labels,
44
+ examples=[
45
+ ["bike.jpg", 5],
46
+ ["car.jpg", 5],
47
+ ["food.jpg", 5],
48
+ ],
49
+ allow_flagging="never",
50
+ )
51
+
52
+ iface.launch()
bike.jpg ADDED
car.jpg ADDED
food.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.13.1
2
+ transformers>=4.25.1
3
+ https://shi-labs.com/natten/wheels/cpu/torch1.13/natten-0.14.4%2Btorch1130cpu-cp38-cp38-linux_x86_64.whl