Spaces:
Running
Running
import numpy as np | |
from .cpd_nonlin import cpd_nonlin | |
def l2_normalize_np_array(np_array, eps=1e-5): | |
"""np_array: np.ndarray, (*, D), where the last dim will be normalized""" | |
return np_array / (np.linalg.norm(np_array, axis=-1, keepdims=True) + eps) | |
def cpd_auto(K, ncp, vmax, desc_rate=1, **kwargs): | |
"""Main interface | |
Detect change points automatically selecting their number | |
K - kernel between each pair of frames in video | |
ncp - maximum ncp | |
vmax - special parameter | |
Optional arguments: | |
lmin - minimum segment length | |
lmax - maximum segment length | |
desc_rate - rate of descriptor sampling (vmax always corresponds to 1x) | |
Note: | |
- cps are always calculated in subsampled coordinates irrespective to | |
desc_rate | |
- lmin and m should be in agreement | |
--- | |
Returns: (cps, costs) | |
cps - best selected change-points | |
costs - costs for 0,1,2,...,m change-points | |
Memory requirement: ~ (3*N*N + N*ncp)*4 bytes ~= 16 * N^2 bytes | |
That is 1,6 Gb for the N=10000. | |
""" | |
m = ncp | |
(_, scores) = cpd_nonlin(K, m, backtrack=False, **kwargs) | |
# print("scores ",scores) | |
N = K.shape[0] | |
N2 = N * desc_rate # length of the video before subsampling | |
penalties = np.zeros(m + 1) | |
# Prevent division by zero (in case of 0 changes) | |
ncp = np.arange(1, m + 1) | |
penalties[1:] = (vmax * ncp / (2.0 * N2)) * (np.log(float(N2) / ncp) + 1) | |
costs = scores / float(N) + penalties | |
m_best = np.argmin(costs) | |
# print("cost ",costs) | |
# print("m_best ",m_best) | |
(cps, scores2) = cpd_nonlin(K, m_best, **kwargs) | |
return (cps, costs) | |
# ------------------------------------------------------------------------------ | |
# Extra functions (currently not used) | |
def estimate_vmax(K_stable): | |
"""K_stable - kernel between all frames of a stable segment""" | |
n = K_stable.shape[0] | |
vmax = np.trace(centering(K_stable) / n) | |
return vmax | |
def centering(K): | |
"""Apply kernel centering""" | |
mean_rows = np.mean(K, 1)[:, np.newaxis] | |
return K - mean_rows - mean_rows.T + np.mean(mean_rows) | |
def eval_score(K, cps): | |
""" Evaluate unnormalized empirical score | |
(sum of kernelized scatters) for the given change-points """ | |
N = K.shape[0] | |
cps = [0] + list(cps) + [N] | |
V1 = 0 | |
V2 = 0 | |
for i in range(len(cps) - 1): | |
K_sub = K[cps[i]:cps[i + 1], :][:, cps[i]:cps[i + 1]] | |
V1 += np.sum(np.diag(K_sub)) | |
V2 += np.sum(K_sub) / float(cps[i + 1] - cps[i]) | |
return (V1 - V2) | |
def eval_cost(K, cps, score, vmax): | |
""" Evaluate cost function for automatic number of change points selection | |
K - kernel between all frames | |
cps - selected change-points | |
score - unnormalized empirical score (sum of kernelized scatters) | |
vmax - vmax parameter""" | |
N = K.shape[0] | |
penalty = (vmax * len(cps) / (2.0 * N)) * (np.log(float(N) / len(cps)) + 1) | |
return score / float(N) + penalty | |
def calc_scatters(K): | |
n = K.shape[0] | |
K1 = np.cumsum([0] + list(np.diag(K))) | |
K2 = np.zeros((n + 1, n + 1)).astype(np.double()) | |
K2[1:, 1:] = np.cumsum(np.cumsum(K, 0), 1) # TODO: use the fact that K - symmetric | |
# KK = np.cumsum(K, 0).astype(np.double()) | |
# K2[1:, 1:] = np.cumsum(KK, 1) # TODO: use the fact that K - symmetric | |
scatters = np.zeros((n, n)) | |
# code = r""" | |
# for (int i = 0; i < n; i++) { | |
# for (int j = i; j < n; j++) { | |
# scatters(i,j) = K1(j+1)-K1(i) - (K2(j+1,j+1)+K2(i,i)-K2(j+1,i)-K2(i,j+1))/(j-i+1); | |
# } | |
# } | |
# """ | |
# weave.inline(code, ['K1','K2','scatters','n'], global_dict = \ | |
# {'K1':K1, 'K2':K2, 'scatters':scatters, 'n':n}, type_converters=weave.converters.blitz) | |
for i in range(n): | |
for j in range(i, n): | |
scatters[i, j] = K1[j + 1] - K1[i] - (K2[j + 1, j + 1] + K2[i, i] - K2[j + 1, i] - K2[i, j + 1]) / ( | |
j - i + 1) | |
return scatters | |
def cpd_nonlin(K, ncp, lmin=1, lmax=100000, backtrack=True, verbose=True, | |
out_scatters=None): | |
""" Change point detection with dynamic programming | |
K - square kernel matrix | |
ncp - number of change points to detect (ncp >= 0) | |
lmin - minimal length of a segment | |
lmax - maximal length of a segment | |
backtrack - when False - only evaluate objective scores (to save memory) | |
Returns: (cps, obj) | |
cps - detected array of change points: mean is thought to be constant on [ cps[i], cps[i+1] ) | |
obj_vals - values of the objective function for 0..m changepoints | |
""" | |
m = int(ncp) # prevent numpy.int64 | |
(n, n1) = K.shape | |
assert (n == n1), "Kernel matrix awaited." | |
assert (n >= (m + 1) * lmin) | |
assert (n <= (m + 1) * lmax) | |
assert (lmax >= lmin >= 1) | |
if verbose: | |
# print "n =", n | |
print("Precomputing scatters.") | |
J = calc_scatters(K) | |
if out_scatters != None: | |
out_scatters[0] = J | |
if verbose: | |
print("Inferring best change points.") | |
I = 1e101 * np.ones((m + 1, n + 1)) | |
I[0, lmin:lmax] = J[0, lmin - 1:lmax - 1] | |
if backtrack: | |
p = np.zeros((m + 1, n + 1), dtype=int) | |
else: | |
p = np.zeros((1, 1), dtype=int) | |
# code = r""" | |
# #define max(x,y) ((x)>(y)?(x):(y)) | |
# for (int k=1; k<m+1; k++) { | |
# for (int l=(k+1)*lmin; l<n+1; l++) { | |
# I(k, l) = 1e100; //nearly infinity | |
# for (int t=max(k*lmin,l-lmax); t<l-lmin+1; t++) { | |
# double c = I(k-1, t) + J(t, l-1); | |
# if (c < I(k, l)) { | |
# I(k, l) = c; | |
# if (backtrack == 1) { | |
# p(k, l) = t; | |
# } | |
# } | |
# } | |
# } | |
# } | |
# """ | |
# weave.inline(code, ['m','n','p','I', 'J', 'lmin', 'lmax', 'backtrack'], \ | |
# global_dict={'m':m, 'n':n, 'p':p, 'I':I, 'J':J, \ | |
# 'lmin':lmin, 'lmax':lmax, 'backtrack': int(1) if backtrack else int(0)}, | |
# type_converters=weave.converters.blitz) | |
for k in range(1, m + 1): | |
for l in range((k + 1) * lmin, n + 1): | |
I[k, l] = 1e100 | |
for t in range(max(k * lmin, l - lmax), l - lmin + 1): | |
c = I[k - 1, t] + J[t, l - 1] | |
if (c < I[k, l]): | |
I[k, l] = c | |
if (backtrack == 1): | |
p[k, l] = t | |
# Collect change points | |
cps = np.zeros(m, dtype=int) | |
if backtrack: | |
cur = n | |
for k in range(m, 0, -1): | |
cps[k - 1] = p[k, cur] | |
cur = cps[k - 1] | |
scores = I[:, n].copy() | |
scores[scores > 1e99] = np.inf | |
return cps, scores | |