kkulchatbot / app.py
Sirawitch's picture
Update app.py
a90d622 verified
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
try:
model_name = "scb10x/llama-3-typhoon-v1.5-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# 4-bit quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map="auto",
low_cpu_mem_usage=True,
)
logger.info(f"Model loaded successfully on {device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
class Query(BaseModel):
queryResult: Optional[dict] = None
queryText: Optional[str] = None
@app.post("/webhook")
async def webhook(query: Query):
try:
user_query = query.queryResult.get('queryText') if query.queryResult else query.queryText
if not user_query:
raise HTTPException(status_code=400, detail="No query text provided")
prompt = f"Human: {user_query}\nAI:"
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(input_ids, max_new_tokens=100, temperature=0.7)
response = tokenizer.decode(output[0], skip_special_tokens=True)
ai_response = response.split("AI:")[-1].strip()
return {"fulfillmentText": ai_response}
except Exception as e:
logger.error(f"Error in webhook: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)