Spaces:
Runtime error
Runtime error
Singularity666
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,383 +1,4 @@
|
|
1 |
-
#
|
2 |
-
!pip install sentencepiece
|
3 |
-
!pip install git+https://github.com/huggingface/transformers.git@cae78c46
|
4 |
-
!pip install diffusers
|
5 |
-
!pip install tokenizers==0.12.1
|
6 |
-
!pip install datasets
|
7 |
-
!pip install accelerate
|
8 |
-
!pip install evaluate
|
9 |
-
!pip install gradio==4.12.0
|
10 |
-
!pip install gradio_client==0.8.0
|
11 |
-
!pip install -i https://download.pytorch.org/whl/cu118 torch==2.0 torchvision==0.15 torchaudio==2.0
|
12 |
-
|
13 |
-
# conversation.py
|
14 |
-
import dataclasses
|
15 |
-
from enum import auto, Enum
|
16 |
-
from typing import List, Tuple
|
17 |
-
|
18 |
-
class SeparatorStyle(Enum):
|
19 |
-
"""Different separator style."""
|
20 |
-
SINGLE = auto()
|
21 |
-
TWO = auto()
|
22 |
-
MPT = auto()
|
23 |
-
|
24 |
-
@dataclasses.dataclass
|
25 |
-
class Conversation:
|
26 |
-
"""A class that keeps all conversation history."""
|
27 |
-
system: str
|
28 |
-
roles: List[str]
|
29 |
-
messages: List[List[str]]
|
30 |
-
offset: int
|
31 |
-
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
32 |
-
sep: str = "###"
|
33 |
-
sep2: str = None
|
34 |
-
version: str = "Unknown"
|
35 |
-
|
36 |
-
skip_next: bool = False
|
37 |
-
|
38 |
-
def get_prompt(self):
|
39 |
-
if self.sep_style == SeparatorStyle.SINGLE:
|
40 |
-
ret = self.system + self.sep
|
41 |
-
for role, message in self.messages:
|
42 |
-
if message:
|
43 |
-
if type(message) is tuple:
|
44 |
-
message, _, _ = message
|
45 |
-
ret += role + ": " + message + self.sep
|
46 |
-
else:
|
47 |
-
ret += role + ":"
|
48 |
-
return ret
|
49 |
-
elif self.sep_style == SeparatorStyle.TWO:
|
50 |
-
seps = [self.sep, self.sep2]
|
51 |
-
ret = self.system + seps[0]
|
52 |
-
for i, (role, message) in enumerate(self.messages):
|
53 |
-
if message:
|
54 |
-
if type(message) is tuple:
|
55 |
-
message, _, _ = message
|
56 |
-
ret += role + ": " + message + seps[i % 2]
|
57 |
-
else:
|
58 |
-
ret += role + ":"
|
59 |
-
return ret
|
60 |
-
if self.sep_style == SeparatorStyle.MPT:
|
61 |
-
ret = self.system + self.sep
|
62 |
-
for role, message in self.messages:
|
63 |
-
if message:
|
64 |
-
if type(message) is tuple:
|
65 |
-
message, _, _ = message
|
66 |
-
ret += role + message + self.sep
|
67 |
-
else:
|
68 |
-
ret += role
|
69 |
-
return ret
|
70 |
-
else:
|
71 |
-
raise ValueError(f"Invalid style: {self.sep_style}")
|
72 |
-
|
73 |
-
def append_message(self, role, message):
|
74 |
-
self.messages.append([role, message])
|
75 |
-
|
76 |
-
def get_images(self, return_pil=False):
|
77 |
-
images = []
|
78 |
-
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
79 |
-
if i % 2 == 0:
|
80 |
-
if type(msg) is tuple:
|
81 |
-
import base64
|
82 |
-
from io import BytesIO
|
83 |
-
from PIL import Image
|
84 |
-
msg, image, image_process_mode = msg
|
85 |
-
if image_process_mode == "Pad":
|
86 |
-
def expand2square(pil_img, background_color=(122, 116, 104)):
|
87 |
-
width, height = pil_img.size
|
88 |
-
if width == height:
|
89 |
-
return pil_img
|
90 |
-
elif width > height:
|
91 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
92 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
93 |
-
return result
|
94 |
-
else:
|
95 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
96 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
97 |
-
return result
|
98 |
-
image = expand2square(image)
|
99 |
-
elif image_process_mode == "Crop":
|
100 |
-
pass
|
101 |
-
elif image_process_mode == "Resize":
|
102 |
-
image = image.resize((224, 224))
|
103 |
-
else:
|
104 |
-
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
105 |
-
max_hw, min_hw = max(image.size), min(image.size)
|
106 |
-
aspect_ratio = max_hw / min_hw
|
107 |
-
max_len, min_len = 800, 400
|
108 |
-
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
109 |
-
longest_edge = int(shortest_edge * aspect_ratio)
|
110 |
-
W, H = image.size
|
111 |
-
if H > W:
|
112 |
-
H, W = longest_edge, shortest_edge
|
113 |
-
else:
|
114 |
-
H, W = shortest_edge, longest_edge
|
115 |
-
image = image.resize((W, H))
|
116 |
-
if return_pil:
|
117 |
-
images.append(image)
|
118 |
-
else:
|
119 |
-
buffered = BytesIO()
|
120 |
-
image.save(buffered, format="JPEG")
|
121 |
-
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
122 |
-
images.append(img_b64_str)
|
123 |
-
return images
|
124 |
-
|
125 |
-
def to_gradio_chatbot(self):
|
126 |
-
ret = []
|
127 |
-
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
128 |
-
if i % 2 == 0:
|
129 |
-
if type(msg) is tuple:
|
130 |
-
import base64
|
131 |
-
from io import BytesIO
|
132 |
-
msg, image, image_process_mode = msg
|
133 |
-
max_hw, min_hw = max(image.size), min(image.size)
|
134 |
-
aspect_ratio = max_hw / min_hw
|
135 |
-
max_len, min_len = 800, 400
|
136 |
-
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
137 |
-
longest_edge = int(shortest_edge * aspect_ratio)
|
138 |
-
W, H = image.size
|
139 |
-
if H > W:
|
140 |
-
H, W = longest_edge, shortest_edge
|
141 |
-
else:
|
142 |
-
H, W = shortest_edge, longest_edge
|
143 |
-
image = image.resize((W, H))
|
144 |
-
# image = image.resize((224, 224))
|
145 |
-
buffered = BytesIO()
|
146 |
-
image.save(buffered, format="JPEG")
|
147 |
-
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
148 |
-
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
149 |
-
msg = msg.replace('<image>', img_str)
|
150 |
-
ret.append([msg, None])
|
151 |
-
else:
|
152 |
-
ret[-1][-1] = msg
|
153 |
-
return ret
|
154 |
-
|
155 |
-
def copy(self):
|
156 |
-
return Conversation(
|
157 |
-
system=self.system,
|
158 |
-
roles=self.roles,
|
159 |
-
messages=[[x, y] for x, y in self.messages],
|
160 |
-
offset=self.offset,
|
161 |
-
sep_style=self.sep_style,
|
162 |
-
sep=self.sep,
|
163 |
-
sep2=self.sep2)
|
164 |
-
|
165 |
-
def dict(self):
|
166 |
-
if len(self.get_images()) > 0:
|
167 |
-
return {
|
168 |
-
"system": self.system,
|
169 |
-
"roles": self.roles,
|
170 |
-
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
171 |
-
"offset": self.offset,
|
172 |
-
"sep": self.sep,
|
173 |
-
"sep2": self.sep2,
|
174 |
-
}
|
175 |
-
return {
|
176 |
-
"system": self.system,
|
177 |
-
"roles": self.roles,
|
178 |
-
"messages": self.messages,
|
179 |
-
"offset": self.offset,
|
180 |
-
"sep": self.sep,
|
181 |
-
"sep2": self.sep2,
|
182 |
-
}
|
183 |
-
|
184 |
-
|
185 |
-
conv_v1 = Conversation(
|
186 |
-
system="A chat between a curious human and an artificial intelligence assistant. "
|
187 |
-
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
188 |
-
roles=("Human", "Assistant"),
|
189 |
-
messages=(
|
190 |
-
("Human", "Give three tips for staying healthy."),
|
191 |
-
("Assistant",
|
192 |
-
"Sure, here are three tips for staying healthy:\n"
|
193 |
-
"1. Exercise regularly: Regular physical activity can help improve your overall health and wellbeing. "
|
194 |
-
"It can also help reduce your risk of chronic conditions such as obesity, diabetes, heart disease, "
|
195 |
-
"and certain cancers. Aim for at least 150 minutes of moderate-intensity aerobic exercise or "
|
196 |
-
"75 minutes of vigorous-intensity aerobic exercise per week, along with muscle-strengthening "
|
197 |
-
"activities at least two days per week.\n"
|
198 |
-
"2. Eat a balanced diet: Eating a balanced diet that is rich in fruits, "
|
199 |
-
"vegetables, whole grains, lean proteins, and healthy fats can help support "
|
200 |
-
"your overall health. Try to limit your intake of processed and high-sugar foods, "
|
201 |
-
"and aim to drink plenty of water throughout the day.\n"
|
202 |
-
"3. Get enough sleep: Getting enough quality sleep is essential for your physical "
|
203 |
-
"and mental health. Adults should aim for seven to nine hours of sleep per night. "
|
204 |
-
"Establish a regular sleep schedule and try to create a relaxing bedtime routine to "
|
205 |
-
"help improve the quality of your sleep.")
|
206 |
-
),
|
207 |
-
offset=2,
|
208 |
-
sep_style=SeparatorStyle.SINGLE,
|
209 |
-
sep="###",
|
210 |
-
)
|
211 |
-
|
212 |
-
conv_v1_2 = Conversation(
|
213 |
-
system="A chat between a curious human and an artificial intelligence assistant. "
|
214 |
-
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
215 |
-
roles=("Human", "Assistant"),
|
216 |
-
messages=(
|
217 |
-
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
218 |
-
("Assistant",
|
219 |
-
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
220 |
-
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
221 |
-
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
222 |
-
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
223 |
-
"renewable and non-renewable energy sources:\n"
|
224 |
-
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
225 |
-
"energy sources are finite and will eventually run out.\n"
|
226 |
-
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
227 |
-
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
228 |
-
"and other negative effects.\n"
|
229 |
-
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
230 |
-
"have lower operational costs than non-renewable sources.\n"
|
231 |
-
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
232 |
-
"locations than non-renewable sources.\n"
|
233 |
-
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
234 |
-
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
235 |
-
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
236 |
-
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
237 |
-
),
|
238 |
-
offset=2,
|
239 |
-
sep_style=SeparatorStyle.SINGLE,
|
240 |
-
sep="###",
|
241 |
-
)
|
242 |
-
|
243 |
-
conv_vicuna_v1_1 = Conversation(
|
244 |
-
system="A chat between a curious user and an artificial intelligence assistant. "
|
245 |
-
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
246 |
-
roles=("USER", "ASSISTANT"),
|
247 |
-
version="v1",
|
248 |
-
messages=(),
|
249 |
-
offset=0,
|
250 |
-
sep_style=SeparatorStyle.TWO,
|
251 |
-
sep=" ",
|
252 |
-
sep2="</s>",
|
253 |
-
)
|
254 |
-
|
255 |
-
conv_mpt = Conversation(
|
256 |
-
system="""system
|
257 |
-
- You are a helpful language and vision assistant.
|
258 |
-
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
259 |
-
- You should follow the instructions carefully and explain your answers in detail.""",
|
260 |
-
roles=("user\n", "assistant\n"),
|
261 |
-
version="mpt",
|
262 |
-
messages=(),
|
263 |
-
offset=0,
|
264 |
-
sep_style=SeparatorStyle.MPT,
|
265 |
-
sep="",
|
266 |
-
)
|
267 |
-
|
268 |
-
conv_mpt_text = Conversation(
|
269 |
-
system="""system
|
270 |
-
- You are a helpful assistant chatbot trained by MosaicML.
|
271 |
-
- You answer questions.
|
272 |
-
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
273 |
-
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
|
274 |
-
roles=("user\n", "assistant\n"),
|
275 |
-
version="mpt",
|
276 |
-
messages=(),
|
277 |
-
offset=0,
|
278 |
-
sep_style=SeparatorStyle.MPT,
|
279 |
-
sep="",
|
280 |
-
)
|
281 |
-
|
282 |
-
conv_bair_v1 = Conversation(
|
283 |
-
system="BEGINNING OF CONVERSATION:",
|
284 |
-
roles=("USER", "GPT"),
|
285 |
-
messages=(),
|
286 |
-
offset=0,
|
287 |
-
sep_style=SeparatorStyle.TWO,
|
288 |
-
sep=" ",
|
289 |
-
sep2="</s>",
|
290 |
-
)
|
291 |
-
|
292 |
-
simple_conv = Conversation(
|
293 |
-
system="A chat between a curious human and an artificial intelligence assistant. "
|
294 |
-
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
295 |
-
roles=("Human", "Assistant"),
|
296 |
-
messages=(
|
297 |
-
("Human", "Hi!"),
|
298 |
-
("Assistant", "Hi there! How can I help you today?")
|
299 |
-
),
|
300 |
-
offset=2,
|
301 |
-
sep_style=SeparatorStyle.SINGLE,
|
302 |
-
sep="###",
|
303 |
-
)
|
304 |
-
|
305 |
-
simple_conv_multimodal = Conversation(
|
306 |
-
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
307 |
-
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
308 |
-
"Follow the instructions carefully and explain your answers in detail.",
|
309 |
-
roles=("Human", "Assistant"),
|
310 |
-
messages=(
|
311 |
-
("Human", "Hi!"),
|
312 |
-
("Assistant", "Hi there! How can I help you today?\n")
|
313 |
-
),
|
314 |
-
offset=2,
|
315 |
-
sep_style=SeparatorStyle.SINGLE,
|
316 |
-
sep="###",
|
317 |
-
)
|
318 |
-
|
319 |
-
simple_conv_mpt_multimodal = Conversation(
|
320 |
-
system="""system
|
321 |
-
- You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.
|
322 |
-
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
323 |
-
- You should follow the instructions carefully and explain your answers in detail.""",
|
324 |
-
roles=("user\n", "assistant\n"),
|
325 |
-
version="mpt",
|
326 |
-
messages=(),
|
327 |
-
offset=0,
|
328 |
-
sep_style=SeparatorStyle.MPT,
|
329 |
-
sep="",
|
330 |
-
)
|
331 |
-
|
332 |
-
simple_conv_legacy = Conversation(
|
333 |
-
system="You are LLaVA, a large language model trained by UW Madison WAIV Lab."
|
334 |
-
"You are designed to assist human with a variety of tasks using natural language."
|
335 |
-
"Follow the instructions carefully.",
|
336 |
-
roles=("Human", "Assistant"),
|
337 |
-
messages=(
|
338 |
-
("Human", "Hi!\n\n### Response:"),
|
339 |
-
("Assistant", "Hi there! How can I help you today?\n")
|
340 |
-
),
|
341 |
-
offset=2,
|
342 |
-
sep_style=SeparatorStyle.SINGLE,
|
343 |
-
sep="###",
|
344 |
-
)
|
345 |
-
|
346 |
-
conv_llava_v1 = Conversation(
|
347 |
-
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
348 |
-
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
349 |
-
"Follow the instructions carefully and explain your answers in detail.",
|
350 |
-
roles=("USER", "ASSISTANT"),
|
351 |
-
version="v1",
|
352 |
-
messages=(),
|
353 |
-
offset=0,
|
354 |
-
sep_style=SeparatorStyle.TWO,
|
355 |
-
sep=" ",
|
356 |
-
sep2="</s>",
|
357 |
-
)
|
358 |
-
|
359 |
-
default_conversation = conv_v1_2
|
360 |
-
conv_templates = {
|
361 |
-
"default": conv_v1_2,
|
362 |
-
"simple": simple_conv,
|
363 |
-
"simple_legacy": simple_conv_legacy,
|
364 |
-
"multimodal": simple_conv_multimodal,
|
365 |
-
"mpt_multimodal": simple_conv_mpt_multimodal,
|
366 |
-
"llava_v1": conv_llava_v1,
|
367 |
-
|
368 |
-
# fastchat
|
369 |
-
"v1": conv_v1_2,
|
370 |
-
"bair_v1": conv_bair_v1,
|
371 |
-
"vicuna_v1_1": conv_vicuna_v1_1,
|
372 |
-
"mpt": conv_mpt,
|
373 |
-
"mpt_text": conv_mpt_text,
|
374 |
-
}
|
375 |
-
|
376 |
-
|
377 |
-
if __name__ == "__main__":
|
378 |
-
print(default_conversation.get_prompt())
|
379 |
-
|
380 |
-
# mgie_llava.py
|
381 |
from typing import List, Optional, Tuple, Union
|
382 |
|
383 |
import torch
|
@@ -398,9 +19,11 @@ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
|
398 |
DEFAULT_IM_START_TOKEN = "<im_start>"
|
399 |
DEFAULT_IM_END_TOKEN = "<im_end>"
|
400 |
|
|
|
401 |
class LlavaConfig(LlamaConfig):
|
402 |
model_type = "llava"
|
403 |
|
|
|
404 |
class LlavaLlamaModel(LlamaModel):
|
405 |
config_class = LlavaConfig
|
406 |
|
@@ -776,133 +399,4 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
776 |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
777 |
|
778 |
AutoConfig.register("llava", LlavaConfig)
|
779 |
-
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
780 |
-
|
781 |
-
# main.py
|
782 |
-
from google.colab import drive
|
783 |
-
drive.mount('/content/drive')
|
784 |
-
|
785 |
-
import os
|
786 |
-
from PIL import Image
|
787 |
-
import numpy as np
|
788 |
-
import torch as T
|
789 |
-
import transformers
|
790 |
-
import diffusers
|
791 |
-
import gradio as gr
|
792 |
-
import huggingface_hub
|
793 |
-
|
794 |
-
CKPT_DIR = '/content/drive/My Drive/_ckpt'
|
795 |
-
|
796 |
-
def crop_resize(f, sz=512):
|
797 |
-
w, h = f.size
|
798 |
-
if w > h:
|
799 |
-
p = (w - h) // 2
|
800 |
-
f = f.crop([p, 0, p + h, h])
|
801 |
-
elif h > w:
|
802 |
-
p = (h - w) // 2
|
803 |
-
f = f.crop([0, p, w, p + w])
|
804 |
-
f = f.resize([sz, sz])
|
805 |
-
return f
|
806 |
-
|
807 |
-
def remove_alter(s):
|
808 |
-
if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:') + 10:].strip()
|
809 |
-
if '</s>' in s: s = s[:s.index('</s>')].strip()
|
810 |
-
if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
|
811 |
-
if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
|
812 |
-
s = '.'.join([s.strip() for s in s.split('.')[:2]])
|
813 |
-
if s[-1] != '.': s += '.'
|
814 |
-
return s.strip()
|
815 |
-
|
816 |
-
DEFAULT_IMAGE_TOKEN = '<image>'
|
817 |
-
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
|
818 |
-
DEFAULT_IM_START_TOKEN = '<im_start>'
|
819 |
-
DEFAULT_IM_END_TOKEN = '<im_end>'
|
820 |
-
PATH_LLAVA = f'{CKPT_DIR}/LLaVA-7B-v1'
|
821 |
-
|
822 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
|
823 |
-
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
|
824 |
-
image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16)
|
825 |
-
|
826 |
-
tokenizer.padding_side = 'left'
|
827 |
-
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
828 |
-
model.resize_token_embeddings(len(tokenizer))
|
829 |
-
ckpt = T.load(f'{CKPT_DIR}/mgie_7b/mllm.pt', map_location='cpu')
|
830 |
-
model.load_state_dict(ckpt, strict=False)
|
831 |
-
|
832 |
-
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
|
833 |
-
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
834 |
-
if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
835 |
-
|
836 |
-
vision_tower = model.get_model().vision_tower[0]
|
837 |
-
vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda()
|
838 |
-
model.get_model().vision_tower[0] = vision_tower
|
839 |
-
vision_config = vision_tower.config
|
840 |
-
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
841 |
-
vision_config.use_im_start_end = mm_use_im_start_end
|
842 |
-
if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
843 |
-
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
844 |
-
|
845 |
-
_ = model.eval()
|
846 |
-
|
847 |
-
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
|
848 |
-
pipe.set_progress_bar_config(disable=True)
|
849 |
-
pipe.unet.load_state_dict(T.load(f'{CKPT_DIR}/mgie_7b/unet.pt', map_location='cpu'))
|
850 |
-
print('--init MGIE--')
|
851 |
-
|
852 |
-
def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
853 |
-
EMB = ckpt['emb'].cuda()
|
854 |
-
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
|
855 |
-
|
856 |
-
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
|
857 |
-
inp = img
|
858 |
-
|
859 |
-
img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0]
|
860 |
-
txt = "what will this image be like if '%s'" % (txt)
|
861 |
-
txt = txt + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
|
862 |
-
conv = conv_templates['vicuna_v1_1'].copy()
|
863 |
-
conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None)
|
864 |
-
txt = conv.get_prompt()
|
865 |
-
txt = tokenizer(txt)
|
866 |
-
txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask'])
|
867 |
-
|
868 |
-
with T.inference_mode():
|
869 |
-
_ = model.cuda()
|
870 |
-
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
|
871 |
-
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
|
872 |
-
return_dict_in_generate=True, output_hidden_states=True)
|
873 |
-
out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0]
|
874 |
-
|
875 |
-
if 32003 in out: p = out.index(32003) - 1
|
876 |
-
else: p = len(hid) - 9
|
877 |
-
p = min(p, len(hid) - 9)
|
878 |
-
hid = hid[p:p + 8]
|
879 |
-
|
880 |
-
out = remove_alter(tokenizer.decode(out))
|
881 |
-
_ = model.cuda()
|
882 |
-
emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
|
883 |
-
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
|
884 |
-
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
|
885 |
-
|
886 |
-
return res, out
|
887 |
-
|
888 |
-
with gr.Blocks() as app:
|
889 |
-
gr.Markdown(
|
890 |
-
"""
|
891 |
-
# MagiX: Edit Personalized Images using Gen AI by Ateeb Taser
|
892 |
-
"""
|
893 |
-
)
|
894 |
-
with gr.Row():
|
895 |
-
inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True),
|
896 |
-
gr.Image(height=384, width=384, label='Goal Image', interactive=True)]
|
897 |
-
with gr.Row():
|
898 |
-
txt, out = [gr.Textbox(label='Instruction', interactive=True),
|
899 |
-
gr.Textbox(label='Expressive Instruction', interactive=False)]
|
900 |
-
with gr.Row():
|
901 |
-
seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True),
|
902 |
-
gr.Number(value=7.5, label='Text CFG', interactive=True),
|
903 |
-
gr.Number(value=1.5, label='Image CFG', interactive=True)]
|
904 |
-
with gr.Row():
|
905 |
-
btn_sub = gr.Button('Submit')
|
906 |
-
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
|
907 |
-
|
908 |
-
app.launch()
|
|
|
1 |
+
#mgie_llava.py:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from typing import List, Optional, Tuple, Union
|
3 |
|
4 |
import torch
|
|
|
19 |
DEFAULT_IM_START_TOKEN = "<im_start>"
|
20 |
DEFAULT_IM_END_TOKEN = "<im_end>"
|
21 |
|
22 |
+
|
23 |
class LlavaConfig(LlamaConfig):
|
24 |
model_type = "llava"
|
25 |
|
26 |
+
|
27 |
class LlavaLlamaModel(LlamaModel):
|
28 |
config_class = LlavaConfig
|
29 |
|
|
|
399 |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
400 |
|
401 |
AutoConfig.register("llava", LlavaConfig)
|
402 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|