editx / app.py
Singularity666's picture
Update app.py
b3900cd verified
raw
history blame
41.5 kB
# Install required packages
!pip install sentencepiece
!pip install git+https://github.com/huggingface/transformers.git@cae78c46
!pip install diffusers
!pip install tokenizers==0.12.1
!pip install datasets
!pip install accelerate
!pip install evaluate
!pip install gradio==4.12.0
!pip install gradio_client==0.8.0
!pip install -i https://download.pytorch.org/whl/cu118 torch==2.0 torchvision==0.15 torchaudio==2.0
# conversation.py
import dataclasses
from enum import auto, Enum
from typing import List, Tuple
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
MPT = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
version: str = "Unknown"
skip_next: bool = False
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep
for role, message in self.messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
if self.sep_style == SeparatorStyle.MPT:
ret = self.system + self.sep
for role, message in self.messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + message + self.sep
else:
ret += role
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def get_images(self, return_pil=False):
images = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
from PIL import Image
msg, image, image_process_mode = msg
if image_process_mode == "Pad":
def expand2square(pil_img, background_color=(122, 116, 104)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image)
elif image_process_mode == "Crop":
pass
elif image_process_mode == "Resize":
image = image.resize((224, 224))
else:
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
if return_pil:
images.append(image)
else:
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
images.append(img_b64_str)
return images
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
msg, image, image_process_mode = msg
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
# image = image.resize((224, 224))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
msg = msg.replace('<image>', img_str)
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2)
def dict(self):
if len(self.get_images()) > 0:
return {
"system": self.system,
"roles": self.roles,
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
conv_v1 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant"),
messages=(
("Human", "Give three tips for staying healthy."),
("Assistant",
"Sure, here are three tips for staying healthy:\n"
"1. Exercise regularly: Regular physical activity can help improve your overall health and wellbeing. "
"It can also help reduce your risk of chronic conditions such as obesity, diabetes, heart disease, "
"and certain cancers. Aim for at least 150 minutes of moderate-intensity aerobic exercise or "
"75 minutes of vigorous-intensity aerobic exercise per week, along with muscle-strengthening "
"activities at least two days per week.\n"
"2. Eat a balanced diet: Eating a balanced diet that is rich in fruits, "
"vegetables, whole grains, lean proteins, and healthy fats can help support "
"your overall health. Try to limit your intake of processed and high-sugar foods, "
"and aim to drink plenty of water throughout the day.\n"
"3. Get enough sleep: Getting enough quality sleep is essential for your physical "
"and mental health. Adults should aim for seven to nine hours of sleep per night. "
"Establish a regular sleep schedule and try to create a relaxing bedtime routine to "
"help improve the quality of your sleep.")
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_v1_2 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant"),
messages=(
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
("Assistant",
"Renewable energy sources are those that can be replenished naturally in a relatively "
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
"renewable and non-renewable energy sources:\n"
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
"energy sources are finite and will eventually run out.\n"
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
"and other negative effects.\n"
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
"have lower operational costs than non-renewable sources.\n"
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
"locations than non-renewable sources.\n"
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_vicuna_v1_1 = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="v1",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_mpt = Conversation(
system="""system
- You are a helpful language and vision assistant.
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
- You should follow the instructions carefully and explain your answers in detail.""",
roles=("user\n", "assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="",
)
conv_mpt_text = Conversation(
system="""system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
roles=("user\n", "assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="",
)
conv_bair_v1 = Conversation(
system="BEGINNING OF CONVERSATION:",
roles=("USER", "GPT"),
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
simple_conv = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant"),
messages=(
("Human", "Hi!"),
("Assistant", "Hi there! How can I help you today?")
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
simple_conv_multimodal = Conversation(
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"Follow the instructions carefully and explain your answers in detail.",
roles=("Human", "Assistant"),
messages=(
("Human", "Hi!"),
("Assistant", "Hi there! How can I help you today?\n")
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
simple_conv_mpt_multimodal = Conversation(
system="""system
- You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
- You should follow the instructions carefully and explain your answers in detail.""",
roles=("user\n", "assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="",
)
simple_conv_legacy = Conversation(
system="You are LLaVA, a large language model trained by UW Madison WAIV Lab."
"You are designed to assist human with a variety of tasks using natural language."
"Follow the instructions carefully.",
roles=("Human", "Assistant"),
messages=(
("Human", "Hi!\n\n### Response:"),
("Assistant", "Hi there! How can I help you today?\n")
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_llava_v1 = Conversation(
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"Follow the instructions carefully and explain your answers in detail.",
roles=("USER", "ASSISTANT"),
version="v1",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
default_conversation = conv_v1_2
conv_templates = {
"default": conv_v1_2,
"simple": simple_conv,
"simple_legacy": simple_conv_legacy,
"multimodal": simple_conv_multimodal,
"mpt_multimodal": simple_conv_mpt_multimodal,
"llava_v1": conv_llava_v1,
# fastchat
"v1": conv_v1_2,
"bair_v1": conv_bair_v1,
"vicuna_v1_1": conv_vicuna_v1_1,
"mpt": conv_mpt,
"mpt_text": conv_mpt_text,
}
if __name__ == "__main__":
print(default_conversation.get_prompt())
# mgie_llava.py
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM, \
CLIPVisionModel, CLIPImageProcessor
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
import os, diffusers
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
class LlavaConfig(LlamaConfig):
model_type = "llava"
class LlavaLlamaModel(LlamaModel):
config_class = LlavaConfig
def __init__(self, config: LlamaConfig):
super(LlavaLlamaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
# HACK: for FSDP
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
if hasattr(config, "use_mm_proj"):
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
pretrain_mm_mlp_adapter=None, fsdp=None):
self.config.mm_vision_tower = vision_tower
image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
if not hasattr(self, 'vision_tower'):
vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
else:
vision_tower = self.vision_tower[0]
vision_tower.requires_grad_(False)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
vision_config = vision_tower.config
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
self.config.use_mm_proj = True
self.config.mm_hidden_size = vision_config.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
if not hasattr(self, 'mm_projector'):
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
return dict(
image_processor=image_processor,
image_token_len=num_patches,
vision_config=vision_config
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# HACK: replace back original embeddings for LLaVA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
# if orig_embeds_params is not None:
# orig_embeds_params = orig_embeds_params[0]
# with torch.no_grad():
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
vision_tower = self.get_vision_tower()
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
# TODO: this is a modified multimodal LLM -- Haotian Liu
with torch.no_grad():
if type(images) is list:
# variable length images
image_features = []
for image in images:
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
image_feature = select_hidden_state[:, 1:]
image_features.append(image_feature)
else:
image_forward_outs = vision_tower(images.to(vision_tower.dtype), output_hidden_states=True)
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
image_features = select_hidden_state[:, 1:].to(images.dtype)
if type(images) is list:
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
else:
image_features = self.mm_projector(image_features)
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
dummy_image_features = self.mm_projector(dummy_image_features)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
new_input_embeds.append(cur_input_embeds)
cur_image_idx += 1
continue
if vision_tower.config.use_im_start_end:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
raise ValueError("The number of image start tokens and image end tokens should be the same.")
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
for image_start_token_pos in image_start_tokens:
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
num_patches = cur_image_features.shape[0]
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
raise ValueError("The image end token should follow the image start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
new_input_embeds.append(cur_new_input_embeds)
else:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
mask_index_start = masked_indices[0]
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
raise ValueError("The image patch tokens should be consecutive.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
new_input_embeds.append(cur_new_input_embeds)
cur_image_idx += 1
inputs_embeds = torch.stack(new_input_embeds, dim=0)
return super(LlavaLlamaModel, self).forward(
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict
)
class EditMapper(nn.Module):
def __init__(self):
super().__init__()
self.llm2hid = nn.Linear(4096, 512)
self.query = nn.Parameter(torch.randn(1, 77, 512))
self.mapper = nn.Transformer(batch_first=True, norm_first=True,
d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
dim_feedforward=2048, dropout=0.0)
self.hid2feat = nn.Linear(512, 768)
def forward(self, llm, emb):
hid = self.llm2hid(llm+emb)
hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
feat = self.hid2feat(hid)
return feat
class LlavaLlamaForCausalLM(LlamaForCausalLM):
config_class = LlavaConfig
def __init__(self, config):
super(LlamaForCausalLM, self).__init__(config)
self.model = LlavaLlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.edit_head = EditMapper()
'''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'),
diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'),
diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')]
self.vae.requires_grad_(False)
self.unet.register_to_config(in_channels=8)
with torch.no_grad():
conv = torch.nn.Conv2d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
conv.weight.zero_()
conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
self.unet.conv_in = conv'''
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_vision_tower(self):
model = self.get_model()
vision_tower = model.vision_tower
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
p2p_inp=None, p2p_ans=None
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
images=images
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if labels is not None:
llm = []
for i in range(labels.shape[0]):
try: p = labels[i].data.cpu().tolist().index(32003)-1
except: p = len(labels[i])-9
p = min(len(hidden_states[i])-9, p)
llm.append(hidden_states[i][p:p+8].unsqueeze(0))
llm = torch.cat(llm, dim=0)
hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
B, DROP = labels.shape[0], 0.05
hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
with torch.no_grad():
lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]
noise = torch.randn_like(lat_ans)
ts = torch.randint(0, self.scheduler.config.num_train_timesteps, (B, ), device=noise.device).long()
lat_noise = self.scheduler.add_noise(lat_ans, noise, ts)
prob = torch.rand(B, device=lat_ans.device)
mask = (prob<(DROP*2)).reshape(B, 1, 1)
hid_edit = torch.where(mask, hid_null, hid_edit)
mask = (1.0-((prob>=DROP).to(lat_inp.dtype)*(prob<(DROP*3)).to(lat_inp.dtype))).reshape(B, 1, 1, 1)
lat_inp *= mask
out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample
loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
loss = loss_ce+loss_edit*0.5
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
vision_config = self.get_vision_tower().config
vision_config.use_im_start_end = mm_use_im_start_end
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if tune_mm_mlp_adapter:
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
AutoConfig.register("llava", LlavaConfig)
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
# main.py
from google.colab import drive
drive.mount('/content/drive')
import os
from PIL import Image
import numpy as np
import torch as T
import transformers
import diffusers
import gradio as gr
import huggingface_hub
CKPT_DIR = '/content/drive/My Drive/_ckpt'
def crop_resize(f, sz=512):
w, h = f.size
if w > h:
p = (w - h) // 2
f = f.crop([p, 0, p + h, h])
elif h > w:
p = (h - w) // 2
f = f.crop([0, p, w, p + w])
f = f.resize([sz, sz])
return f
def remove_alter(s):
if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:') + 10:].strip()
if '</s>' in s: s = s[:s.index('</s>')].strip()
if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
s = '.'.join([s.strip() for s in s.split('.')[:2]])
if s[-1] != '.': s += '.'
return s.strip()
DEFAULT_IMAGE_TOKEN = '<image>'
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
DEFAULT_IM_START_TOKEN = '<im_start>'
DEFAULT_IM_END_TOKEN = '<im_end>'
PATH_LLAVA = f'{CKPT_DIR}/LLaVA-7B-v1'
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16)
tokenizer.padding_side = 'left'
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
ckpt = T.load(f'{CKPT_DIR}/mgie_7b/mllm.pt', map_location='cpu')
model.load_state_dict(ckpt, strict=False)
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
vision_tower = model.get_model().vision_tower[0]
vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda()
model.get_model().vision_tower[0] = vision_tower
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
_ = model.eval()
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
pipe.set_progress_bar_config(disable=True)
pipe.unet.load_state_dict(T.load(f'{CKPT_DIR}/mgie_7b/unet.pt', map_location='cpu'))
print('--init MGIE--')
def go_mgie(img, txt, seed, cfg_txt, cfg_img):
EMB = ckpt['emb'].cuda()
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
inp = img
img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0]
txt = "what will this image be like if '%s'" % (txt)
txt = txt + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
conv = conv_templates['vicuna_v1_1'].copy()
conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None)
txt = conv.get_prompt()
txt = tokenizer(txt)
txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask'])
with T.inference_mode():
_ = model.cuda()
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
return_dict_in_generate=True, output_hidden_states=True)
out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0]
if 32003 in out: p = out.index(32003) - 1
else: p = len(hid) - 9
p = min(p, len(hid) - 9)
hid = hid[p:p + 8]
out = remove_alter(tokenizer.decode(out))
_ = model.cuda()
emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
return res, out
with gr.Blocks() as app:
gr.Markdown(
"""
# MagiX: Edit Personalized Images using Gen AI by Ateeb Taser
"""
)
with gr.Row():
inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True),
gr.Image(height=384, width=384, label='Goal Image', interactive=True)]
with gr.Row():
txt, out = [gr.Textbox(label='Instruction', interactive=True),
gr.Textbox(label='Expressive Instruction', interactive=False)]
with gr.Row():
seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True),
gr.Number(value=7.5, label='Text CFG', interactive=True),
gr.Number(value=1.5, label='Image CFG', interactive=True)]
with gr.Row():
btn_sub = gr.Button('Submit')
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
app.launch()