Spaces:
Running
Running
from pathlib import Path | |
from functools import partial | |
from joeynmt.prediction import predict | |
from joeynmt.helpers import ( | |
check_version, | |
load_checkpoint, | |
load_config, | |
parse_train_args, | |
resolve_ckpt_path, | |
) | |
from joeynmt.model import build_model | |
from joeynmt.tokenizers import build_tokenizer | |
from joeynmt.vocabulary import build_vocab | |
from joeynmt.datasets import build_dataset | |
import gradio as gr | |
languages_scripts = { | |
"Azeri Turkish in Persian": "AzeriTurkish-Persian", | |
"Central Kurdish in Arabic": "Sorani-Arabic", | |
"Central Kurdish in Persian": "Sorani-Persian", | |
"Gilaki in Persian": "Gilaki-Persian", | |
"Gorani in Arabic": "Gorani-Arabic", | |
"Gorani in Central Kurdish": "Gorani-Sorani", | |
"Gorani in Persian": "Gorani-Persian", | |
"Kashmiri in Urdu": "Kashmiri-Urdu", | |
"Mazandarani in Persian": "Mazandarani-Persian", | |
"Northern Kurdish in Arabic": "Kurmanji-Arabic", | |
"Northern Kurdish in Persian": "Kurmanji-Persian", | |
"Sindhi in Urdu": "Sindhi-Urdu" | |
} | |
def normalize(text, language_script): | |
cfg_file = "./models/%s/config.yaml"%languages_scripts[language_script] | |
ckpt = "./models/%s/best.ckpt"%languages_scripts[language_script] | |
cfg = load_config(Path(cfg_file)) | |
# parse and validate cfg | |
model_dir, load_model, device, n_gpu, num_workers, _, fp16 = parse_train_args( | |
cfg["training"], mode="prediction") | |
test_cfg = cfg["testing"] | |
src_cfg = cfg["data"]["src"] | |
trg_cfg = cfg["data"]["trg"] | |
load_model = load_model if ckpt is None else Path(ckpt) | |
ckpt = resolve_ckpt_path(load_model, model_dir) | |
src_vocab, trg_vocab = build_vocab(cfg["data"], model_dir=model_dir) | |
model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab) | |
# load model state from disk | |
model_checkpoint = load_checkpoint(ckpt, device=device) | |
model.load_state_dict(model_checkpoint["model_state"]) | |
if device.type == "cuda": | |
model.to(device) | |
tokenizer = build_tokenizer(cfg["data"]) | |
sequence_encoder = { | |
src_cfg["lang"]: partial(src_vocab.sentences_to_ids, bos=False, eos=True), | |
trg_cfg["lang"]: None, | |
} | |
test_cfg["batch_size"] = 1 # CAUTION: this will raise an error if n_gpus > 1 | |
test_cfg["batch_type"] = "sentence" | |
test_data = build_dataset( | |
dataset_type="stream", | |
path=None, | |
src_lang=src_cfg["lang"], | |
trg_lang=trg_cfg["lang"], | |
split="test", | |
tokenizer=tokenizer, | |
sequence_encoder=sequence_encoder, | |
) | |
test_data.set_item(text) | |
# test_data.set_item(INPUT.rstrip()) | |
cfg=test_cfg | |
_, _, hypotheses, trg_tokens, trg_scores, _ = predict( | |
model=model, | |
data=test_data, | |
compute_loss=False, | |
device=device, | |
n_gpu=n_gpu, | |
normalization="none", | |
num_workers=num_workers, | |
cfg=cfg, | |
fp16=fp16, | |
) | |
return hypotheses[0] | |
title = "Script Normalization for Unconventional Writing" | |
description = """ | |
<ul> | |
<li>"<em>mar7aba!</em>"</li> | |
<li>"<em>هاو ئار یوو؟</em>"</li> | |
<li>"<em>Μπιάνβενου α σετ ντεμό!</em>"</li> | |
</ul> | |
<p>What all these sentences are in common? Being greeted in Arabic with "<em>mar7aba</em>" written in the Latin script, then asked how you are ("<em>هاو ئار یوو؟</em>") in English using the Perso-Arabic script of Kurdish and then, welcomed to this demo in French ("<em>Μπιάνβενου α σετ ντεμό!</em>") written in Greek script. All these sentences are written in an <strong>unconventional</strong> script.</p> | |
<p>Although you may find these sentences risible, unconventional writing is a common practice among millions of speakers in bilingual communities. In our paper entitled "<a href="https://sinaahmadi.github.io/docs/articles/ahmadi2023acl.pdf" target="_blank"><strong>Script Normalization for Unconventional Writing of Under-Resourced Languages in Bilingual Communities</strong></a>", we shed light on this problem and propose an approach to normalize noisy text written in unconventional writing.</p> | |
<p>This demo deploys a few models that are trained for <strong>the normalization of unconventional writing</strong>. Please note that this tool is not a spell-checker and cannot correct errors beyond character normalization.</p> | |
For more information, you can check out the project on GitHub too: <a href="https://github.com/sinaahmadi/ScriptNormalization" target="_blank"><strong>https://github.com/sinaahmadi/ScriptNormalization</strong></a> | |
""" | |
examples = [ | |
["بو شهرین نوفوسو ، 2014 نجی ایلين نوفوس ساییمی اساسيندا 41 نفر ایمیش .", "Azeri Turkish in Persian"],#"بۇ شهرین نۆفوسو ، 2014 نجی ایلين نۆفوس ساییمی اساسيندا 41 نفر ایمیش ." | |
["ياخوا تةمةن دريژبيت بوئةم ميللةتة", "Central Kurdish in Arabic"], | |
["یکیک له جوانیکانی ام شاره جوانه", "Central Kurdish in Persian"], | |
["نمک درهٰ مردوم گيلک ايسن ؤ اوشان زوان ني گيلکي ايسه .", "Gilaki in Persian"], | |
["شؤنةو اانةيةرة گةشت و گلي ناجارانةو اؤجالاني دةستش پنةكةرد", "Gorani in Arabic"], #شۆنەو ئانەیەرە گەشت و گێڵی ناچارانەو ئۆجالانی دەستش پنەکەرد | |
["ڕوٙو زوانی ئەذایی چەنی پەیذابی ؟", "Gorani in Central Kurdish"], # ڕوٙو زوانی ئەڎایی چەنی پەیڎابی ؟ | |
["هنگامکان ظميٛ ر چمان ، بپا کريٛلي بيشان :", "Gorani in Persian"], # هەنگامەکان وزمیٛ وەرو چەمان ، بەپاو کریٛڵی بیەشان : | |
["ربعی بن افکل اُسے اَکھ صُحابی .", "Kashmiri in Urdu"], # ربعی بن افکل ٲسؠ اَکھ صُحابی . | |
["اینتا زون گنشکرون 85 میلیون نفر هسن", "Mazandarani in Persian"], # اینتا زوون گِنِشکَرون 85 میلیون نفر هسنه | |
["بة رطكا هة صطئن ژ دل هاطة بة لافكرن", "Northern Kurdish in Arabic"], #پەرتوکا هەستێن ژ دل هاتە بەلافکرن | |
["ثرکى همرنگ نرميني دويت هندک قوناغين دي ببريت", "Northern Kurdish in Persian"], # سەرەکی هەمەرەنگ نەرمینێ دڤێت هندەک قوناغێن دی ببڕیت | |
["ہتی کجھ اپ ۽ تمام دائون ترینون بیھندیون آھن .", "Sindhi in Urdu"] # هتي ڪجھ اپ ۽ تمام ڊائون ٽرينون بيھنديون آھن . | |
] | |
demo = gr.Interface( | |
title=title, | |
description=description, | |
fn=normalize, | |
inputs = [ | |
gr.inputs.Textbox(lines=4, label="Noisy Text \U0001F974"), | |
gr.Dropdown(label="Language in unconventional script", choices=sorted(list(languages_scripts.keys()))), | |
], | |
outputs=gr.outputs.Textbox(label="Normalized Text \U0001F642"), | |
examples=examples | |
) | |
demo.launch() | |