|  | from sumy.parsers.plaintext import PlaintextParser | 
					
						
						|  | from sumy.parsers.html import HtmlParser | 
					
						
						|  | from sumy.nlp.tokenizers import Tokenizer | 
					
						
						|  | from sumy.nlp.stemmers import Stemmer | 
					
						
						|  | from sumy.utils import get_stop_words | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  |  | 
					
						
						|  | import pandas as pd | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  | import nltk | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def summarize(method, language, sentence_count, input_type, input_): | 
					
						
						|  | if method == 'LSA': | 
					
						
						|  | from sumy.summarizers.lsa import LsaSummarizer as Summarizer | 
					
						
						|  | if method == 'text-rank': | 
					
						
						|  | from sumy.summarizers.text_rank import TextRankSummarizer as Summarizer | 
					
						
						|  | if method == 'lex-rank': | 
					
						
						|  | from sumy.summarizers.lex_rank import LexRankSummarizer as Summarizer | 
					
						
						|  | if method == 'edmundson': | 
					
						
						|  | from sumy.summarizers.edmundson import EdmundsonSummarizer as Summarizer | 
					
						
						|  | if method == 'luhn': | 
					
						
						|  | from sumy.summarizers.luhn import LuhnSummarizer as Summarizer | 
					
						
						|  | if method == 'kl-sum': | 
					
						
						|  | from sumy.summarizers.kl import KLSummarizer as Summarizer | 
					
						
						|  | if method == 'random': | 
					
						
						|  | from sumy.summarizers.random import RandomSummarizer as Summarizer | 
					
						
						|  | if method == 'reduction': | 
					
						
						|  | from sumy.summarizers.reduction import ReductionSummarizer as Summarizer | 
					
						
						|  |  | 
					
						
						|  | if input_type == "URL": | 
					
						
						|  | parser = HtmlParser.from_url(input_, Tokenizer(language)) | 
					
						
						|  | if input_type == "text": | 
					
						
						|  | parser = PlaintextParser.from_string(input_, Tokenizer(language)) | 
					
						
						|  |  | 
					
						
						|  | stemmer = Stemmer(language) | 
					
						
						|  | summarizer = Summarizer(stemmer) | 
					
						
						|  | stop_words = get_stop_words(language) | 
					
						
						|  |  | 
					
						
						|  | if method == 'edmundson': | 
					
						
						|  | summarizer.null_words = stop_words | 
					
						
						|  | summarizer.bonus_words = parser.significant_words | 
					
						
						|  | summarizer.stigma_words = parser.stigma_words | 
					
						
						|  | else: | 
					
						
						|  | summarizer.stop_words = stop_words | 
					
						
						|  |  | 
					
						
						|  | summary_sentences = summarizer(parser.document, sentence_count) | 
					
						
						|  | summary = ' '.join([str(sentence) for sentence in summary_sentences]) | 
					
						
						|  |  | 
					
						
						|  | return summary | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_args(): | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  | parser.add_argument("--dataset", default="") | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument("--method", type=str, choices=['LSA', 'text-rank', 'lex-rank', 'edmundson', 'luhn', 'kl-sum', 'random', 'reduction'], default="LSA") | 
					
						
						|  | parser.add_argument("--batch_size", type=int, default=4) | 
					
						
						|  | parser.add_argument("--device", type=str, default="cuda") | 
					
						
						|  | parser.add_argument("--output", type=Path, default="") | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  | return args | 
					
						
						|  |  | 
					
						
						|  | def prepare_dataset(dataset_name, dataset_path="rsasumm/data/processed/"): | 
					
						
						|  | dataset_path = Path(dataset_path) | 
					
						
						|  | if dataset_name == "amazon": | 
					
						
						|  | dataset = pd.read_csv(dataset_path / "amazon_test.csv") | 
					
						
						|  | elif dataset_name == "space": | 
					
						
						|  | dataset = pd.read_csv(dataset_path / "space.csv") | 
					
						
						|  | elif dataset_name == "yelp": | 
					
						
						|  | dataset = pd.read_csv(dataset_path / "yelp_test.csv") | 
					
						
						|  | elif dataset_name == "reviews": | 
					
						
						|  | dataset = pd.read_csv(dataset_path / "test_metareviews.csv") | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown dataset {dataset_name}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return dataset | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def group_text_by_id(df: pd.DataFrame) -> pd.DataFrame: | 
					
						
						|  | """ | 
					
						
						|  | Group the text by the sample id and concatenate the text. | 
					
						
						|  | :param df: The dataframe | 
					
						
						|  | :return: The dataframe with the text grouped by the sample id | 
					
						
						|  | """ | 
					
						
						|  | texts = df.groupby("id")["text"].apply(lambda x: " ".join(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | gold = df.groupby("id")["gold"].first() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | df = pd.DataFrame({"text": texts, "gold": gold}, index=texts.index) | 
					
						
						|  |  | 
					
						
						|  | return df | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  | args = parse_args() | 
					
						
						|  | for N in [1]: | 
					
						
						|  | dataset = prepare_dataset(args.dataset) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | summaries = [] | 
					
						
						|  | for text in dataset.text: | 
					
						
						|  | summary = summarize(args.method, "english", N, "text", text) | 
					
						
						|  | summaries.append(summary) | 
					
						
						|  |  | 
					
						
						|  | dataset['summary'] = summaries | 
					
						
						|  | dataset['metadata/dataset'] = args.dataset | 
					
						
						|  | dataset["metadata/method"] = args.method | 
					
						
						|  | dataset["metadata/sentence_count"] = N | 
					
						
						|  |  | 
					
						
						|  | name = f"{args.dataset}-_-{args.method}-_-sumy_{N}.csv" | 
					
						
						|  | path = Path(args.output) / name | 
					
						
						|  |  | 
					
						
						|  | Path(args.output).mkdir(exist_ok=True, parents=True) | 
					
						
						|  | dataset.to_csv(path, index=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | main() |