MedVQA / gradio_interface.py
SushantGautam's picture
Adjust column scale in output table for improved layout in Gradio interface
e521e5e
raw
history blame
7.26 kB
import sys
import subprocess
import gradio as gr
import json
from datetime import datetime, timezone
from huggingface_hub import upload_file, snapshot_download
import shutil
import os
import glob
from pathlib import Path
from huggingface_hub import whoami
import platform
print(subprocess.check_output(
[sys.executable, "-m", "pip", "list"]).decode("utf-8"))
print({
"python": platform.python_version(),
"os": platform.system(),
"platform": platform.platform(),
"arch": platform.machine()
})
print("Account token used to connect to HuggingFace: ", whoami()['name'])
SUBMISSION_REPO = "SimulaMet/medvqa-submissions"
hub_path = None
submissions = None
last_submission_update_time = datetime.now(timezone.utc)
def refresh_submissions():
global hub_path, submissions, last_submission_update_time
if hub_path and Path(hub_path).exists():
shutil.rmtree(hub_path, ignore_errors=True)
print("Deleted existing submissions")
hub_path = snapshot_download(
repo_type="dataset", repo_id=SUBMISSION_REPO, allow_patterns=['**/*.json'])
print("Downloaded submissions to:", hub_path)
if not os.path.exists(hub_path):
os.makedirs(hub_path)
all_jsons = glob.glob(hub_path + "/**/*.json", recursive=True)
print("json_files count:", len(all_jsons))
submissions = []
for file in all_jsons:
file_ = file.split("/")[-1]
username, sub_timestamp, task = file_.replace(
".json", "").split("-_-_-")
json_data = json.load(open(file))
public_score = json.dumps(json_data.get("public_scores", {}))
submissions.append({"user": username, "task": task, "public_score": public_score,
"submitted_time": sub_timestamp})
last_submission_update_time = datetime.now(timezone.utc)
return hub_path
hub_path = refresh_submissions()
hub_dir = hub_path.split("snapshot")[0] + "snapshot"
def time_ago(submitted_time):
return str(datetime.fromtimestamp(int(submitted_time), tz=timezone.utc)) + " UTC"
def filter_submissions(task_type, search_query):
if search_query == "":
filtered = [s for s in submissions if task_type ==
"all" or s["task"] == task_type]
else:
filtered = [s for s in submissions if (
task_type == "all" or s["task"] == task_type) and search_query.lower() in s["user"].lower()]
return [{"user": s["user"], "task": s["task"], "public_score": s["public_score"], "submitted_time": time_ago(s["submitted_time"])} for s in filtered]
def display_submissions(task_type="all", search_query=""):
if submissions is None or ((datetime.now(timezone.utc) - last_submission_update_time).total_seconds() > 3600):
refresh_submissions()
filtered_submissions = filter_submissions(task_type, search_query)
return [[s["user"], s["task"], s["submitted_time"], s["public_score"]] for s in filtered_submissions]
def add_submission(file):
global submissions
try:
with open(file, 'r', encoding='utf-8') as f:
data = json.load(f)
filename = os.path.basename(file)
username, sub_timestamp, task = filename.replace(
".json", "").split("-_-_-")
submission_time = datetime.fromtimestamp(
int(sub_timestamp), tz=timezone.utc)
assert task in ["task1", "task2"], "Invalid task type"
assert len(username) > 0, "Invalid username"
assert submission_time < datetime.now(
timezone.utc), "Invalid submission time"
upload_file(
repo_type="dataset",
path_or_fileobj=file,
path_in_repo=task + "/" + filename,
repo_id=SUBMISSION_REPO
)
refresh_submissions()
return "πŸ’ͺπŸ†πŸŽ‰ Submissions registered successfully to the system!"
except Exception as e:
return f"❌ Error adding submission: {e}"
def refresh_page():
return "Pong! Submission server is alive! 😊"
# Define Gradio Interface
with gr.Blocks(title="🌟ImageCLEFmed-MEDVQA-GI 2025 Submissions 🌟") as demo:
gr.Markdown("""
# 🌟 Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge! πŸ₯🧬
### πŸš€ [**Challenge Homepage** in GitHub](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) | πŸ“ [**Register** for ImageCLEF 2025](https://www.imageclef.org/2025#registration) | πŸ“… [**Competition Schedule**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#:~:text=Schedule) | πŸ“¦ [**Submission Instructions**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system)πŸ”₯πŸ”₯
### πŸ“₯ [**Available Datasets**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-data) | πŸ’‘ [Tasks & Example Training **Notebooks**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-task-descriptions)πŸ’₯πŸ’₯
""")
with gr.Tab("View Submissions"):
gr.Markdown("### Filter and Search Submissions")
with gr.Row():
with gr.Column(scale=1):
task_type_dropdown = gr.Dropdown(
choices=["all", "task1", "task2"],
value="all",
label="Task Type"
)
search_box = gr.Textbox(
label="Search by Username",
placeholder="Enter username..."
)
with gr.Column(scale=6):
output_table = gr.Dataframe(
headers=["User", "Task", "Submitted Time", "Public Score"],
interactive=False,
wrap=True,
column_widths=["100px", "50px", "80px", "200px"],
label="Submissions"
)
task_type_dropdown.change(
fn=display_submissions,
inputs=[task_type_dropdown, search_box],
outputs=output_table
)
search_box.change(
fn=display_submissions,
inputs=[task_type_dropdown, search_box],
outputs=output_table
)
gr.Markdown(
f'''
πŸ”„ Last refreshed: {last_submission_update_time.strftime('%Y-%m-%d %H:%M:%S')} UTC | πŸ“Š Total Submissions: {len(submissions)}
πŸ’¬ For any questions or issues, [contact the organizers](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-organizers) or check the documentation in the [GitHub repo](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025). Good luck and thank you for contributing to medical AI research! πŸ’ͺπŸ€–πŸŒ
''')
with gr.Tab("Upload Submission", visible=False):
file_input = gr.File(label="Upload JSON", file_types=[".json"])
upload_output = gr.Textbox(label="Upload Result")
file_input.upload(fn=add_submission,
inputs=file_input, outputs=upload_output)
with gr.Tab("Refresh API", visible=False):
refresh_button = gr.Button("Refresh")
status_output = gr.Textbox(label="Status")
refresh_button.click(fn=refresh_page, inputs=[], outputs=status_output)
demo.load(lambda: display_submissions("all", ""),
inputs=[], outputs=output_table)
demo.launch()