Spaces:
Sleeping
Sleeping
from typing import Optional | |
from langchain.chains import create_extraction_chain_pydantic | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_extraction_chain | |
from copy import deepcopy | |
from langchain_openai import ChatOpenAI | |
from langchain_community.utilities import SQLDatabase | |
import os | |
import difflib | |
import ast | |
import json | |
import re | |
from thefuzz import process | |
# Set up logging | |
import logging | |
from dotenv import load_dotenv | |
load_dotenv(".env") | |
logging.basicConfig(level=logging.INFO) | |
# Save the log to a file | |
handler = logging.FileHandler('extractor.log') | |
logger = logging.getLogger(__name__) | |
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') | |
# os.environ["ANTHROPIC_API_KEY"] = os.getenv('ANTHROPIC_API_KEY') | |
if os.getenv('LANGSMITH'): | |
os.environ['LANGCHAIN_TRACING_V2'] = 'true' | |
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com' | |
os.environ[ | |
'LANGCHAIN_API_KEY'] = os.getenv("LANGSMITH_API_KEY") | |
os.environ['LANGCHAIN_PROJECT'] = 'master-theses' | |
db = SQLDatabase.from_uri("sqlite:///data/games.db") | |
# from langchain_anthropic import ChatAnthropic | |
class Extractor(): | |
# llm = ChatOpenAI(model_name="gpt-4-0125-preview", temperature=0) | |
#gpt-3.5-turbo | |
def __init__(self, model="gpt-3.5-turbo-0125", schema_config=None, custom_extractor_prompt=None): | |
# model = "gpt-4-0125-preview" | |
if custom_extractor_prompt: | |
cust_promt = ChatPromptTemplate.from_template(custom_extractor_prompt) | |
self.llm = ChatOpenAI(model=model, temperature=0) | |
# self.llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) | |
self.schema = schema_config or {} | |
self.chain = create_extraction_chain(self.schema, self.llm, prompt=cust_promt) | |
def extract(self, query): | |
return self.chain.invoke(query) | |
class Retriever(): | |
def __init__(self, db, config): | |
self.db = db | |
self.config = config | |
self.table = config.get('db_table') | |
self.column = config.get('db_column') | |
self.pk_column = config.get('pk_column') | |
self.numeric = config.get('numeric', False) | |
self.response = [] | |
self.query = f"SELECT {self.column} FROM {self.table}" | |
self.augmented_table = config.get('augmented_table', None) | |
self.augmented_column = config.get('augmented_column', None) | |
self.augmented_fk = config.get('augmented_fk', None) | |
def query_as_list(self): | |
# Execute the query | |
response = self.db.run(self.query) | |
response = [el for sub in ast.literal_eval(response) for el in sub if el] | |
if not self.numeric: | |
response = [re.sub(r"\b\d+\b", "", string).strip() for string in response] | |
self.response = list(set(response)) | |
# print(self.response) | |
return self.response | |
def get_augmented_items(self, prompt): | |
if self.augmented_table is None: | |
return None | |
else: | |
# Construct the query to search for the prompt in the augmented table | |
query = f"SELECT {self.augmented_fk} FROM {self.augmented_table} WHERE LOWER({self.augmented_column}) = LOWER('{prompt}')" | |
# Execute the query | |
fk_response = self.db.run(query) | |
if fk_response: | |
# Extract the FK value | |
fk_response = ast.literal_eval(fk_response) | |
fk_value = fk_response[0][0] | |
query = f"SELECT {self.column} FROM {self.table} WHERE {self.pk_column} = {fk_value}" | |
# Execute the query | |
matching_response = self.db.run(query) | |
# Extract the matching response | |
matching_response = ast.literal_eval(matching_response) | |
matching_response = matching_response[0][0] | |
return matching_response | |
else: | |
return None | |
def find_close_matches(self, target_string, n=3, method="difflib", threshold=70): | |
""" | |
Find and return the top n close matches to target_string in the database query results. | |
Args: | |
- target_string (str): The string to match against the database results. | |
- n (int): Number of top matches to return. | |
Returns: | |
- list of tuples: Each tuple contains a match and its score. | |
""" | |
# Ensure we have the response list populated | |
if not self.response: | |
self.query_as_list() | |
# Find top n close matches | |
if method == "fuzzy": | |
# Use the fuzzy_string method to get matches and their scores | |
# If the threshold is met, return the best match; otherwise, return all matches meeting the threshold | |
top_matches = self.fuzzy_string(target_string, limit=n, threshold=threshold) | |
else: | |
# Use difflib's get_close_matches to get the top n matches | |
top_matches = difflib.get_close_matches(target_string, self.response, n=n, cutoff=0.2) | |
return top_matches | |
def fuzzy_string(self, prompt, limit, threshold=80, low_threshold=30): | |
# Get matches and their scores, limited by the specified 'limit' | |
matches = process.extract(prompt, self.response, limit=limit) | |
filtered_matches = [match for match in matches if match[1] >= threshold] | |
# If no matches meet the threshold, return the list of all matches' strings | |
if not filtered_matches: | |
# Return matches above the low_threshold | |
# Fix for wrong properties being returned | |
return [match[0] for match in matches if match[1] >= low_threshold] | |
# If there's only one match meeting the threshold, return it as a string | |
if len(filtered_matches) == 1: | |
return filtered_matches[0][0] # Return the matched string directly | |
# If there's more than one match meeting the threshold or ties, return the list of matches' strings | |
highest_score = filtered_matches[0][1] | |
ties = [match for match in filtered_matches if match[1] == highest_score] | |
# Return the strings of tied matches directly, ignoring the scores | |
m = [match[0] for match in ties] | |
if len(m) == 1: | |
return m[0] | |
return [match[0] for match in ties] | |
def fetch_pk(self, property_name, property_value): | |
# Some properties do not have a primary key | |
# Return the property value if no primary key is specified | |
pk_list = [] | |
# Check if the property_value is a list; if not, make it a list for uniform processing | |
if not isinstance(property_value, list): | |
property_value = [property_value] | |
# Some properties do not have a primary key | |
# Return None for each property_value if no primary key is specified | |
if self.pk_column is None: | |
return [None for _ in property_value] | |
for value in property_value: | |
query = f"SELECT {self.pk_column} FROM {self.table} WHERE {self.column} = '{value}' LIMIT 1" | |
response = self.db.run(query) | |
# Append the response (PK or None) to the pk_list | |
pk_list.append(response) | |
return pk_list | |
def setup_retrievers(db, schema_config): | |
# retrievers = {} | |
# for prop, config in schema_config["properties"].items(): | |
# retrievers[prop] = Retriever(db=db, config=config) | |
# return retrievers | |
retrievers = {} | |
# Iterate over each property in the schema_config's properties | |
for prop, config in schema_config["properties"].items(): | |
# Access the 'items' dictionary for the configuration of the array's elements | |
item_config = config['items'] | |
# Create a Retriever instance using the item_config | |
retrievers[prop] = Retriever(db=db, config=item_config) | |
return retrievers | |
def extract_properties(prompt, schema_config, custom_extractor_prompt=None): | |
"""Extract properties from the prompt.""" | |
# modify schema_conf to only include the required properties | |
schema_stripped = {'properties': {}} | |
for key, value in schema_config['properties'].items(): | |
schema_stripped['properties'][key] = { | |
'type': value['type'], | |
'items': {'type': value['items']['type']} | |
} | |
extractor = Extractor(schema_config=schema_stripped, custom_extractor_prompt=custom_extractor_prompt) | |
extraction_result = extractor.extract(prompt) | |
# print("Extraction Result:", extraction_result) | |
if 'text' in extraction_result and extraction_result['text']: | |
properties = extraction_result['text'] | |
return properties | |
else: | |
print("No properties extracted.") | |
return None | |
def recheck_property_value(properties, property_name, retrievers, input_func): | |
while True: | |
new_value = input_func(f"Enter new value for {property_name} or type 'quit' to stop: ") | |
if new_value.lower() == 'quit': | |
break # Exit the loop and do not update the property | |
new_top_matches = retrievers[property_name].find_close_matches(new_value, n=3) | |
if new_top_matches: | |
# Display new top matches and ask for confirmation or re-entry | |
print("\nNew close matches found:") | |
for i, match in enumerate(new_top_matches, start=1): | |
print(f"[{i}] {match}") | |
print("[4] Re-enter value") | |
print("[5] Quit without updating") | |
selection = input_func("Select the best match (1-3), choose 4 to re-enter value, or 5 to quit: ") | |
if selection in ['1', '2', '3']: | |
selected_match = new_top_matches[int(selection) - 1] | |
properties[property_name] = selected_match # Update the dictionary directly | |
print(f"Updated {property_name} to {selected_match}") | |
break # Successfully updated, exit the loop | |
elif selection == '5': | |
break # Quit without updating | |
# Loop will continue if user selects 4 or inputs invalid selection | |
else: | |
print("No close matches found. Please try again or type 'quit' to stop.") | |
def check_and_update_properties(properties_list, retrievers, method="fuzzy", input_func=input): | |
""" | |
Checks and updates the properties in the properties list based on close matches found in the database. | |
The function iterates through each property in each property dictionary within the list, | |
finds close matches for it in the database using the retrievers, and updates the property | |
value based on user selection. | |
Args: | |
properties_list (list of dict): A list of dictionaries, where each dictionary contains properties | |
to check and potentially update based on database matches. | |
retrievers (dict): A dictionary of Retriever objects keyed by property name, used to find close matches in the database. | |
input_func (function, optional): A function to capture user input. Defaults to the built-in input function. | |
The function updates the properties_list in place based on user choices for updating property values | |
with close matches found by the retrievers. | |
""" | |
for index, properties in enumerate(properties_list): | |
for property_name, retriever in retrievers.items(): # Iterate using items to get both key and value | |
property_values = properties.get(property_name, []) | |
if not property_values: # Skip if the property is not present or is an empty list | |
continue | |
updated_property_values = [] # To store updated list of values | |
for value in property_values: | |
if retriever.augmented_table: | |
augmented_value = retriever.get_augmented_items(value) | |
if augmented_value: | |
updated_property_values.append(augmented_value) | |
continue | |
# Since property_value is now expected to be a list, we handle each value individually | |
top_matches = retriever.find_close_matches(value, method=method, n=3) | |
# Check if the closest match is the same as the current value | |
if top_matches and top_matches[0] == value: | |
updated_property_values.append(value) | |
continue | |
if not top_matches: | |
updated_property_values.append(value) # Keep the original value if no matches found | |
continue | |
if type(top_matches) == str and method == "fuzzy": | |
# If the top_matches is a string, it means that the threshold was met and only one item was returned | |
# In this case, we can directly update the property with the top match | |
updated_property_values.append(top_matches) | |
properties[property_name] = updated_property_values | |
continue | |
print(f"\nCurrent {property_name}: {value}") | |
for i, match in enumerate(top_matches, start=1): | |
print(f"[{i}] {match}") | |
print("[4] Enter new value") | |
# hmm = input_func(f"Fix for Pycharm, press enter to continue") | |
choice = input_func(f"Select the best match for {property_name} (1-4): ") | |
if choice in ['1', '2', '3']: | |
selected_match = top_matches[int(choice) - 1] | |
updated_property_values.append(selected_match) # Update with the selected match | |
print(f"Updated {property_name} to {selected_match}") | |
elif choice == '4': | |
# Allow re-entry of value for this specific item | |
recheck_property_value(properties, property_name, value, retrievers, input_func) | |
# Note: Implement recheck_property_value to handle individual value updates within the list | |
else: | |
print("Invalid selection. Property not updated.") | |
updated_property_values.append(value) # Keep the original value | |
# Update the entire list for the property after processing all values | |
properties[property_name] = updated_property_values | |
# Function to remove duplicates | |
def remove_duplicates(dicts): | |
seen = {} # Dictionary to keep track of seen values for each key | |
for d in dicts: | |
for key in list(d.keys()): # Use list to avoid RuntimeError for changing dict size during iteration | |
value = d[key] | |
if key in seen and value == seen[key]: | |
del d[key] # Remove key-value pair if duplicate is found | |
else: | |
seen[key] = value # Update seen values for this key | |
return dicts | |
def fetch_pks(properties_list, retrievers): | |
all_pk_attributes = [] # Initialize a list to store dictionaries of _pk attributes for each item in properties_list | |
# Iterate through each properties dictionary in the list | |
for properties in properties_list: | |
pk_attributes = {} # Initialize a dictionary for the current set of properties | |
for property_name, property_value in properties.items(): | |
if property_name in retrievers: | |
# Fetch the primary key using the retriever for the current property | |
pk = retrievers[property_name].fetch_pk(property_name, property_value) | |
# Store it in the dictionary with a modified key name | |
pk_attributes[f"{property_name}_pk"] = pk | |
# Add the dictionary of _pk attributes for the current set of properties to the list | |
all_pk_attributes.append(pk_attributes) | |
# Return a list of dictionaries, where each dictionary contains _pk attributes for a set of properties | |
return all_pk_attributes | |
def update_prompt(prompt, properties, pk, properties_original): | |
# Replace the original prompt with the updated properties and pk | |
prompt = prompt.replace("{{properties}}", str(properties)) | |
prompt = prompt.replace("{{pk}}", str(pk)) | |
return prompt | |
def update_prompt_enhanced(prompt, properties, pk, properties_original): | |
updated_info = "" | |
for prop, pk_info, prop_orig in zip(properties, pk, properties_original): | |
for key in prop.keys(): | |
# Extract original and updated values | |
orig_values = prop_orig.get(key, []) | |
updated_values = prop.get(key, []) | |
# Ensure both original and updated values are lists for uniform processing | |
if not isinstance(orig_values, list): | |
orig_values = [orig_values] | |
if not isinstance(updated_values, list): | |
updated_values = [updated_values] | |
# Extract primary key detail for this key, handling various pk formats carefully | |
pk_key = f"{key}_pk" # Construct pk key name based on the property key | |
pk_details = pk_info.get(pk_key, []) | |
if not isinstance(pk_details, list): | |
pk_details = [pk_details] | |
for orig_value, updated_value, pk_detail in zip(orig_values, updated_values, pk_details): | |
pk_value = None | |
if isinstance(pk_detail, str): | |
pk_value = pk_detail.strip("[]()").split(",")[0].replace("'", "").replace('"', '') | |
update_statement = "" | |
# Skip updating if there's no change in value to avoid redundant info | |
if orig_value != updated_value and pk_value: | |
update_statement = f"\n- {orig_value} (now referred to as {updated_value}) has a primary key: {pk_value}." | |
elif orig_value != updated_value: | |
update_statement = f"\n- {orig_value} (now referred to as {updated_value})." | |
elif pk_value: | |
update_statement = f"\n- {orig_value} has a primary key: {pk_value}." | |
updated_info += update_statement | |
if updated_info: | |
prompt += "\nUpdated Information:" + updated_info | |
return prompt | |
def prompt_cleaner(prompt, db, schema_config): | |
"""Main function to clean the prompt.""" | |
retrievers = setup_retrievers(db, schema_config) | |
properties = extract_properties(prompt, schema_config) | |
# Keep original properties for later use | |
properties_original = deepcopy(properties) | |
# Remove duplicates - Happens when there are more than one player or team in the prompt | |
properties = remove_duplicates(properties) | |
if properties: | |
check_and_update_properties(properties, retrievers) | |
pk = fetch_pks(properties, retrievers) | |
properties = update_prompt_enhanced(prompt, properties, pk, properties_original) | |
return properties, pk | |
class PromptCleaner: | |
""" | |
A class designed to clean and process prompts by extracting properties, removing duplicates, | |
and updating these properties based on a predefined schema configuration and database interactions. | |
Attributes: | |
db: A database connection object used to execute queries and fetch data. | |
schema_config: A dictionary defining the schema configuration for the extraction process. | |
schema_config = { | |
"properties": { | |
# Property name | |
"person_name": {"type": "string", "db_table": "players", "db_column": "name", "pk_column": "hash", | |
# if mostly numeric, such as 2015-2016 set true | |
"numeric": False}, | |
"team_name": {"type": "string", "db_table": "teams", "db_column": "name", "pk_column": "id", | |
"numeric": False}, | |
# Add more as needed | |
}, | |
# Parameter to extractor, if person_name is required, add it here and the extractor will | |
# return an error if it is not found | |
"required": [], | |
} | |
Methods: | |
clean(prompt): Cleans the given prompt by extracting and updating properties based on the database. | |
Returns a tuple containing the updated properties and their primary keys. | |
""" | |
def __init__(self, db=db, schema_config=None, custom_extractor_prompt=None): | |
""" | |
Initializes the PromptCleaner with a database connection and a schema configuration. | |
Args: | |
db: The database connection object to be used for querying. (if none, it will use the default db) | |
schema_config: A dictionary defining properties and their database mappings for extraction and updating. | |
""" | |
self.db = db | |
self.schema_config = schema_config | |
self.retrievers = setup_retrievers(self.db, self.schema_config) | |
self.cust_extractor_prompt = custom_extractor_prompt | |
def clean(self, prompt, return_pk=False, test=False, verbose = False): | |
""" | |
Processes the given prompt to extract properties, remove duplicates, update the properties | |
based on close matches within the database, and fetch primary keys for these properties. | |
The method first extracts properties from the prompt using the schema configuration, | |
then checks these properties against the database to find and update close matches. | |
It also fetches primary keys for the updated properties where applicable. | |
Args: | |
prompt (str): The prompt text to be cleaned and processed. | |
return_pk (bool): A flag to indicate whether to return primary keys along with the properties. | |
test (bool): A flag to indicate whether to return the original properties for testing purposes. | |
verbose (bool): A flag to indicate whether to return the original properties for debugging. | |
Returns: | |
tuple: A tuple containing two elements: | |
- The first element is the original prompt, with updated information that excist in the db. | |
- The second element is a list of dictionaries, each containing primary keys for the properties, | |
where applicable. | |
""" | |
if self.cust_extractor_prompt: | |
properties = extract_properties(prompt, self.schema_config, self.cust_extractor_prompt) | |
else: | |
properties = extract_properties(prompt, self.schema_config) | |
# Keep original properties for later use | |
properties_original = deepcopy(properties) | |
if test: | |
return properties_original | |
# Remove duplicates - Happens when there are more than one player or team in the prompt | |
# properties = remove_duplicates(properties) | |
pk = None | |
if properties: | |
check_and_update_properties(properties, self.retrievers) | |
pk = fetch_pks(properties, self.retrievers) | |
properties = update_prompt_enhanced(prompt, properties, pk, properties_original) | |
if return_pk: | |
return properties, pk | |
elif verbose: | |
return properties, properties_original | |
else: | |
return properties | |
def load_json(file_path: str) -> dict: | |
with open(file_path, 'r') as file: | |
return json.load(file) | |
def create_extractor(schema: str = "src/conf/schema.json", db: SQLDatabase = "sqlite:///data/games.db", ): | |
schema_config = load_json(schema) | |
db = SQLDatabase.from_uri(db) | |
pre_prompt = """Extract and save the relevant entities mentioned \ | |
in the following passage together with their properties. | |
Only extract the properties mentioned in the 'information_extraction' function. | |
The questions are soccer related. game_event are things like yellow cards, goals, assists, freekick ect. | |
Generic properties like, "description", "home team", "away team", "game" ect should NOT be extracted. | |
If a property is not present and is not required in the function parameters, do not include it in the output. | |
If no properties are found, return an empty list. | |
Here are some exampels: | |
'How many goals did Henry score for Arsnl in the 2015 season?' | |
person_name': ['Henry'], 'team_name': [Arsnl],'year_season': ['2015'], | |
Passage: | |
{input} | |
""" | |
return PromptCleaner(db, schema_config, custom_extractor_prompt=pre_prompt) | |
if __name__ == "__main__": | |
schema_config = load_json("src/conf/schema.json") | |
# Add game and league to the schema_config | |
# prompter = PromptCleaner(db, schema_config, custom_extractor_prompt=extract_prompt) | |
prompter = create_extractor("src/conf/schema.json", "sqlite:///data/games.db") | |
prompt= prompter.clean("Give me goals, shots on target, shots off target and corners from the game between ManU and Swansa") | |
print(prompt) | |