Spaces:
Runtime error
Runtime error
| # data_prep.py | |
| # example: recency from last_purchase_days_ago (if exists) | |
| if 'last_purchase_days_ago' in df.columns: | |
| df['recency'] = df['last_purchase_days_ago'] | |
| else: | |
| df['recency'] = np.nan | |
| # example: tenure from signup_date | |
| if 'signup_date' in df.columns: | |
| df['signup_date'] = pd.to_datetime(df['signup_date'], errors='coerce') | |
| df['tenure_days'] = (pd.Timestamp('today') - df['signup_date']).dt.days.fillna(df['signup_date'].median()) | |
| else: | |
| df['tenure_days'] = np.nan | |
| # keep numeric features and encode categorical later | |
| return df | |
| def prepare_features(df: pd.DataFrame, cat_cols=None, save_encoder_path=None): | |
| df = df.copy() | |
| if cat_cols is None: | |
| cat_cols = [c for c in df.columns if df[c].dtype == 'object'] | |
| num_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])] | |
| # One-hot encode categories (simple) | |
| if len(cat_cols) > 0: | |
| encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) | |
| cat_mat = encoder.fit_transform(df[cat_cols].astype(str)) | |
| cat_df = pd.DataFrame(cat_mat, columns=encoder.get_feature_names_out(cat_cols), index=df.index) | |
| features = pd.concat([df[num_cols], cat_df], axis=1) | |
| if save_encoder_path: | |
| joblib.dump(encoder, save_encoder_path) | |
| else: | |
| features = df[num_cols] | |
| return features.fillna(0) | |
| if __name__ == '__main__': | |
| import argparse | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--input', default='data/customers_example.csv') | |
| parser.add_argument('--out_features', default='data/features.parquet') | |
| parser.add_argument('--save_encoder', default='data/ohe.joblib') | |
| args = parser.parse_args() | |
| df = load_data(args.input) | |
| df = basic_clean(df) | |
| df = feature_engineer(df) | |
| features = prepare_features(df, save_encoder_path=args.save_encoder) | |
| features.to_parquet(args.out_features) | |
| print('Saved features to', args.out_features) |