Spaces:
Runtime error
Runtime error
import joblib | |
import os | |
import warnings | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
warnings.filterwarnings("ignore") | |
TOKEN = os.environ['TOKEN'] | |
REPO_ID = "SimonRaviv/wine-quality" | |
MODEL_FILENAME = "sklearn_model.joblib" | |
model_file_path = hf_hub_download(REPO_ID, MODEL_FILENAME, use_auth_token=TOKEN) | |
model = joblib.load(model_file_path) | |
def predict(data): | |
prediction = model.predict(data.to_numpy()).tolist() | |
prediction = [[p] for p in prediction] | |
return prediction | |
headers = [ | |
"fixed acidity", | |
"volatile acidity", | |
"citric acid", | |
"residual sugar", | |
"chlorides", | |
"free sulfur dioxide", | |
"total sulfur dioxide", | |
"density", | |
"pH", | |
"sulphates", | |
"alcohol", | |
] | |
default = [ | |
[7.4, 0.7, 0, 1.9, 0.076, 11, 34, 0.9978, 3.51, 0.56, 9.4], | |
[7.8, 0.88, 0, 2.6, 0.098, 25, 67, 0.9968, 3.2, 0.68, 9.8], | |
[7.8, 0.76, 0.04, 2.3, 0.092, 15, 54, 0.997, 3.26, 0.65, 9.8], | |
] | |
inputs = gr.inputs.Dataframe( | |
row_count=(3, "dynamic"), | |
col_count=(11, "dynamic"), | |
headers=headers, | |
default=default) | |
outputs = gr.outputs.Dataframe(type="numpy", headers=["Quality"]) | |
interface = gr.Interface( | |
fn=predict, | |
title="Wine Quality predictor with SKLearn", | |
inputs=inputs, | |
outputs=outputs | |
) | |
interface.launch() | |