Spaces:
Sleeping
Sleeping
| import io | |
| import requests | |
| import numpy as np | |
| import gradio as gr | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| from transformers import pipeline | |
| # Load the pipeline | |
| obj_detector = pipeline( | |
| task="object-detection", | |
| model="facebook/detr-resnet-50" | |
| ) | |
| # Object detection utilities | |
| def load_image_from_url(url: str): | |
| return Image.open(requests.get(url, stream=True).raw).convert("RGB") | |
| def render_results_in_image(img, detection_results): | |
| plt.figure(figsize=(16, 10)) | |
| plt.imshow(img) | |
| ax = plt.gca() | |
| for prediction in detection_results: | |
| x, y = prediction["box"]["xmin"], prediction["box"]["ymin"] | |
| w = prediction["box"]["xmax"] - prediction["box"]["xmin"] | |
| h = prediction["box"]["ymax"] - prediction["box"]["ymin"] | |
| ax.add_patch( | |
| plt.Rectangle( | |
| (x, y), | |
| w, | |
| h, | |
| fill=False, | |
| color="green", | |
| linewidth=2 | |
| ) | |
| ) | |
| ax.text( | |
| x, | |
| y, | |
| f"{prediction['label']}: {round(prediction['score']*100, 1)}%" | |
| ) | |
| plt.axis("off") | |
| # save the modified image to a BytesIO object | |
| img_buf = io.BytesIO() | |
| plt.savefig(img_buf, format="png", | |
| bbox_inches="tight", | |
| pad_inches=0) | |
| img_buf.seek(0) | |
| modified_image = Image.open(img_buf) | |
| # close the plot to prevent it from being displayed | |
| plt.close() | |
| return modified_image | |
| def summarize_detection_results(detection_results): | |
| summary = {} | |
| for prediction in detection_results: | |
| label = prediction["label"] | |
| if label in summary: | |
| summary[label] += 1 | |
| else: | |
| summary[label] = 1 | |
| summary_string = "In this image, there are " | |
| for i, (label, count) in enumerate(summary.items()): | |
| summary_string += f"{str(count)} {label}" | |
| if count > 1: | |
| summary_string += "s" | |
| summary_string += ", " | |
| if i == len(summary) - 2: | |
| summary_string += "and " | |
| # remove the trailing comma and space | |
| summary_string = summary_string.rstrip(", ") + "." | |
| return summary_string | |
| def detect_objects(image): | |
| detection_results = obj_detector(image) | |
| processed_image = render_results_in_image(image, detection_results) | |
| summary_string = summarize_detection_results(detection_results) | |
| return processed_image, summary_string | |
| obj_detection_interface = gr.Interface( | |
| fn=detect_objects, | |
| inputs=gr.Image(label="Input Image", type="pil"), | |
| outputs=[ | |
| gr.Image(label="Output image with predicted objects", type="pil"), | |
| gr.Textbox(label="Object detection summary") | |
| ], | |
| title="Object Detection Application", | |
| description="This app detects objects from an image.", | |
| examples=["./examples/image1.jpg"] | |
| ) |