Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import collections | |
import torch.nn as nn | |
from functools import partial | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
from diffusers import AutoencoderKL, PNDMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler | |
from models.unet_2d_condition import UNet2DConditionModel | |
from utils.attention_utils import CrossAttentionLayers, SelfAttentionLayers | |
# suppress partial model loading warning | |
logging.set_verbosity_error() | |
class RegionDiffusion(nn.Module): | |
def __init__(self, device): | |
super().__init__() | |
self.device = device | |
self.num_train_timesteps = 1000 | |
self.clip_gradient = False | |
print(f'[INFO] loading stable diffusion...') | |
model_id = 'runwayml/stable-diffusion-v1-5' | |
self.vae = AutoencoderKL.from_pretrained( | |
model_id, subfolder="vae").to(self.device) | |
self.tokenizer = CLIPTokenizer.from_pretrained( | |
model_id, subfolder='tokenizer') | |
self.text_encoder = CLIPTextModel.from_pretrained( | |
model_id, subfolder='text_encoder').to(self.device) | |
self.unet = UNet2DConditionModel.from_pretrained( | |
model_id, subfolder="unet").to(self.device) | |
self.scheduler = PNDMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", | |
num_train_timesteps=self.num_train_timesteps, skip_prk_steps=True, steps_offset=1) | |
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device) | |
self.masks = [] | |
self.attention_maps = None | |
self.selfattn_maps = None | |
self.crossattn_maps = None | |
self.color_loss = torch.nn.functional.mse_loss | |
self.forward_hooks = [] | |
self.forward_replacement_hooks = [] | |
print(f'[INFO] loaded stable diffusion!') | |
def get_text_embeds(self, prompt, negative_prompt): | |
# prompt, negative_prompt: [str] | |
# Tokenize text and get embeddings | |
text_input = self.tokenizer( | |
prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
text_embeddings = self.text_encoder( | |
text_input.input_ids.to(self.device))[0] | |
# Do the same for unconditional embeddings | |
uncond_input = self.tokenizer(negative_prompt, padding='max_length', | |
max_length=self.tokenizer.model_max_length, return_tensors='pt') | |
with torch.no_grad(): | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(self.device))[0] | |
# Cat for final embeddings | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def get_text_embeds_list(self, prompts): | |
# prompts: [list] | |
text_embeddings = [] | |
for prompt in prompts: | |
# Tokenize text and get embeddings | |
text_input = self.tokenizer( | |
[prompt], padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
text_embeddings.append(self.text_encoder( | |
text_input.input_ids.to(self.device))[0]) | |
return text_embeddings | |
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5, | |
latents=None, use_guidance=False, text_format_dict={}, inject_selfattn=0, bg_aug_end=1000): | |
if latents is None: | |
latents = torch.randn( | |
(1, self.unet.in_channels, height // 8, width // 8), device=self.device) | |
if inject_selfattn > 0: | |
latents_reference = latents.clone().detach() | |
self.scheduler.set_timesteps(num_inference_steps) | |
n_styles = text_embeddings.shape[0]-1 | |
assert n_styles == len(self.masks) | |
with torch.autocast('cuda'): | |
for i, t in enumerate(self.scheduler.timesteps): | |
# predict the noise residual | |
with torch.no_grad(): | |
# tokens without any attributes | |
feat_inject_step = t > (1-inject_selfattn) * 1000 | |
noise_pred_uncond_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[:1], | |
text_format_dict={})['sample'] | |
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[-1:], | |
text_format_dict=text_format_dict)['sample'] | |
if inject_selfattn > 0: | |
noise_pred_uncond_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[:1], | |
text_format_dict={})['sample'] | |
self.register_selfattn_hooks(feat_inject_step) | |
noise_pred_text_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[-1:], | |
text_format_dict={})['sample'] | |
self.remove_selfattn_hooks() | |
noise_pred_uncond = noise_pred_uncond_cur * self.masks[-1] | |
noise_pred_text = noise_pred_text_cur * self.masks[-1] | |
# tokens with attributes | |
for style_i, mask in enumerate(self.masks[:-1]): | |
if t > bg_aug_end: | |
rand_rgb = torch.rand([1, 3, 1, 1]).cuda() | |
black_background = torch.ones( | |
[1, 3, height, width]).cuda()*rand_rgb | |
black_latent = self.encode_imgs( | |
black_background) | |
noise = torch.randn_like(black_latent) | |
black_latent_noisy = self.scheduler.add_noise( | |
black_latent, noise, t) | |
masked_latent = ( | |
mask > 0.001) * latents + (mask < 0.001) * black_latent_noisy | |
noise_pred_uncond_cur = self.unet(masked_latent, t, encoder_hidden_states=text_embeddings[:1], | |
text_format_dict={})['sample'] | |
else: | |
masked_latent = latents | |
self.register_replacement_hooks(feat_inject_step) | |
noise_pred_text_cur = self.unet(masked_latent, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2], | |
text_format_dict={})['sample'] | |
self.remove_replacement_hooks() | |
noise_pred_uncond = noise_pred_uncond + noise_pred_uncond_cur*mask | |
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask | |
# perform classifier-free guidance | |
noise_pred = noise_pred_uncond + guidance_scale * \ | |
(noise_pred_text - noise_pred_uncond) | |
if inject_selfattn > 0: | |
noise_pred_refer = noise_pred_uncond_refer + guidance_scale * \ | |
(noise_pred_text_refer - noise_pred_uncond_refer) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_reference = self.scheduler.step(torch.cat([noise_pred, noise_pred_refer]), t, | |
torch.cat([latents, latents_reference]))[ | |
'prev_sample'] | |
latents, latents_reference = torch.chunk( | |
latents_reference, 2, dim=0) | |
else: | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents)[ | |
'prev_sample'] | |
# apply guidance | |
if use_guidance and t < text_format_dict['guidance_start_step']: | |
with torch.enable_grad(): | |
if not latents.requires_grad: | |
latents.requires_grad = True | |
latents_0 = self.predict_x0(latents, noise_pred, t) | |
latents_inp = 1 / 0.18215 * latents_0 | |
imgs = self.vae.decode(latents_inp).sample | |
imgs = (imgs / 2 + 0.5).clamp(0, 1) | |
loss_total = 0. | |
for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']): | |
avg_rgb = ( | |
imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum() | |
loss = self.color_loss( | |
avg_rgb, rgb_val[:, :, 0, 0])*100 | |
# print(loss) | |
loss_total += loss | |
loss_total.backward() | |
latents = ( | |
latents - latents.grad * text_format_dict['color_guidance_weight'] * self.masks[0]).detach().clone() | |
return latents | |
def predict_x0(self, x_t, eps_t, t): | |
alpha_t = self.scheduler.alphas_cumprod[t] | |
return (x_t - eps_t * torch.sqrt(1-alpha_t)) / torch.sqrt(alpha_t) | |
def produce_attn_maps(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50, | |
guidance_scale=7.5, latents=None): | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
if isinstance(negative_prompts, str): | |
negative_prompts = [negative_prompts] | |
# Prompts -> text embeds | |
text_embeddings = self.get_text_embeds( | |
prompts, negative_prompts) # [2, 77, 768] | |
if latents is None: | |
latents = torch.randn( | |
(text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device) | |
self.scheduler.set_timesteps(num_inference_steps) | |
self.remove_replacement_hooks() | |
with torch.autocast('cuda'): | |
for i, t in enumerate(self.scheduler.timesteps): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = self.unet( | |
latent_model_input, t, encoder_hidden_states=text_embeddings)['sample'] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * \ | |
(noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents)[ | |
'prev_sample'] | |
# Img latents -> imgs | |
imgs = self.decode_latents(latents) # [1, 3, 512, 512] | |
# Img to Numpy | |
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy() | |
imgs = (imgs * 255).round().astype('uint8') | |
return imgs | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
with torch.no_grad(): | |
imgs = self.vae.decode(latents).sample | |
imgs = (imgs / 2 + 0.5).clamp(0, 1) | |
return imgs | |
def encode_imgs(self, imgs): | |
# imgs: [B, 3, H, W] | |
imgs = 2 * imgs - 1 | |
posterior = self.vae.encode(imgs).latent_dist | |
latents = posterior.sample() * 0.18215 | |
return latents | |
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50, | |
guidance_scale=7.5, latents=None, text_format_dict={}, use_guidance=False, inject_selfattn=0, bg_aug_end=1000): | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
if isinstance(negative_prompts, str): | |
negative_prompts = [negative_prompts] | |
# Prompts -> text embeds | |
text_embeds = self.get_text_embeds( | |
prompts, negative_prompts) # [2, 77, 768] | |
# else: | |
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents, | |
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, | |
use_guidance=use_guidance, text_format_dict=text_format_dict, | |
inject_selfattn=inject_selfattn, bg_aug_end=bg_aug_end) # [1, 4, 64, 64] | |
# Img latents -> imgs | |
imgs = self.decode_latents(latents) # [1, 3, 512, 512] | |
# Img to Numpy | |
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy() | |
imgs = (imgs * 255).round().astype('uint8') | |
return imgs | |
def reset_attention_maps(self): | |
r"""Function to reset attention maps. | |
We reset attention maps because we append them while getting hooks | |
to visualize attention maps for every step. | |
""" | |
for key in self.selfattn_maps: | |
self.selfattn_maps[key] = [] | |
for key in self.crossattn_maps: | |
self.crossattn_maps[key] = [] | |
def register_evaluation_hooks(self): | |
r"""Function for registering hooks during evaluation. | |
We mainly store activation maps averaged over queries. | |
""" | |
self.forward_hooks = [] | |
def save_activations(activations, name, module, inp, out): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
# out[0] - final output of attention layer | |
# out[1] - attention probability matrix | |
if 'attn2' in name: | |
assert out[1].shape[-1] == 77 | |
activations[name].append(out[1].detach().cpu()) | |
else: | |
assert out[1].shape[-1] != 77 | |
attention_dict = collections.defaultdict(list) | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_hooks.append(module.register_forward_hook( | |
partial(save_activations, attention_dict, name) | |
)) | |
# attention_dict is a dictionary containing attention maps for every attention layer | |
self.attention_maps = attention_dict | |
def register_selfattn_hooks(self, feat_inject_step=False): | |
r"""Function for registering hooks during evaluation. | |
We mainly store activation maps averaged over queries. | |
""" | |
self.selfattn_forward_hooks = [] | |
def save_activations(activations, name, module, inp, out): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
# out[0] - final output of attention layer | |
# out[1] - attention probability matrix | |
if 'attn2' in name: | |
assert out[1][1].shape[-1] == 77 | |
# cross attention injection | |
# activations[name] = out[1][1].detach() | |
else: | |
assert out[1][1].shape[-1] != 77 | |
activations[name] = out[1][1].detach() | |
def save_resnet_activations(activations, name, module, inp, out): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
# out[0] - final output of residual layer | |
# out[1] - residual hidden feature | |
# import ipdb | |
# ipdb.set_trace() | |
assert out[1].shape[-1] == 16 | |
activations[name] = out[1].detach() | |
attention_dict = collections.defaultdict(list) | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name and feat_inject_step: | |
# Register hook to obtain outputs at every attention layer. | |
self.selfattn_forward_hooks.append(module.register_forward_hook( | |
partial(save_activations, attention_dict, name) | |
)) | |
if name == 'up_blocks.1.resnets.1' and feat_inject_step: | |
self.selfattn_forward_hooks.append(module.register_forward_hook( | |
partial(save_resnet_activations, attention_dict, name) | |
)) | |
# attention_dict is a dictionary containing attention maps for every attention layer | |
self.self_attention_maps_cur = attention_dict | |
def register_replacement_hooks(self, feat_inject_step=False): | |
r"""Function for registering hooks to replace self attention. | |
""" | |
self.forward_replacement_hooks = [] | |
def replace_activations(name, module, args): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
if 'attn1' in name: | |
modified_args = (args[0], self.self_attention_maps_cur[name]) | |
return modified_args | |
# cross attention injection | |
# elif 'attn2' in name: | |
# modified_map = { | |
# 'reference': self.self_attention_maps_cur[name], | |
# 'inject_pos': self.inject_pos, | |
# } | |
# modified_args = (args[0], modified_map) | |
# return modified_args | |
def replace_resnet_activations(name, module, args): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
modified_args = (args[0], args[1], | |
self.self_attention_maps_cur[name]) | |
return modified_args | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name and feat_inject_step: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_replacement_hooks.append(module.register_forward_pre_hook( | |
partial(replace_activations, name) | |
)) | |
if name == 'up_blocks.1.resnets.1' and feat_inject_step: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_replacement_hooks.append(module.register_forward_pre_hook( | |
partial(replace_resnet_activations, name) | |
)) | |
def register_tokenmap_hooks(self): | |
r"""Function for registering hooks during evaluation. | |
We mainly store activation maps averaged over queries. | |
""" | |
self.forward_hooks = [] | |
def save_activations(selfattn_maps, crossattn_maps, n_maps, name, module, inp, out): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
# out[0] - final output of attention layer | |
# out[1] - attention probability matrices | |
if name in n_maps: | |
n_maps[name] += 1 | |
else: | |
n_maps[name] = 1 | |
if 'attn2' in name: | |
assert out[1][0].shape[-1] == 77 | |
if name in CrossAttentionLayers and n_maps[name] > 10: | |
if name in crossattn_maps: | |
crossattn_maps[name] += out[1][0].detach().cpu()[1:2] | |
else: | |
crossattn_maps[name] = out[1][0].detach().cpu()[1:2] | |
else: | |
assert out[1][0].shape[-1] != 77 | |
if name in SelfAttentionLayers and n_maps[name] > 10: | |
if name in crossattn_maps: | |
selfattn_maps[name] += out[1][0].detach().cpu()[1:2] | |
else: | |
selfattn_maps[name] = out[1][0].detach().cpu()[1:2] | |
selfattn_maps = collections.defaultdict(list) | |
crossattn_maps = collections.defaultdict(list) | |
n_maps = collections.defaultdict(list) | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_hooks.append(module.register_forward_hook( | |
partial(save_activations, selfattn_maps, | |
crossattn_maps, n_maps, name) | |
)) | |
# attention_dict is a dictionary containing attention maps for every attention layer | |
self.selfattn_maps = selfattn_maps | |
self.crossattn_maps = crossattn_maps | |
self.n_maps = n_maps | |
def remove_tokenmap_hooks(self): | |
for hook in self.forward_hooks: | |
hook.remove() | |
self.selfattn_maps = None | |
self.crossattn_maps = None | |
self.n_maps = None | |
def remove_evaluation_hooks(self): | |
for hook in self.forward_hooks: | |
hook.remove() | |
self.attention_maps = None | |
def remove_replacement_hooks(self): | |
for hook in self.forward_replacement_hooks: | |
hook.remove() | |
def remove_selfattn_hooks(self): | |
for hook in self.selfattn_forward_hooks: | |
hook.remove() | |