Spaces:
Sleeping
Sleeping
Simon Thomine
commited on
Commit
•
94e4abf
1
Parent(s):
7973387
add cutpaste defect
Browse files- app.py +1 -1
- source/cutpaste.py +114 -0
- source/defectGenerator.py +17 -2
app.py
CHANGED
@@ -46,7 +46,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
46 |
with gr.Group():
|
47 |
with gr.Row():
|
48 |
category_input = gr.Dropdown(label="Select object", choices=list(images.keys()),value="Bottle")
|
49 |
-
defect_type_input = gr.Dropdown(label="Select type of defect", choices=["blurred", "nsa","structural", "textural" ],value="nsa")
|
50 |
submit = gr.Button(
|
51 |
scale=1,
|
52 |
variant='primary'
|
|
|
46 |
with gr.Group():
|
47 |
with gr.Row():
|
48 |
category_input = gr.Dropdown(label="Select object", choices=list(images.keys()),value="Bottle")
|
49 |
+
defect_type_input = gr.Dropdown(label="Select type of defect", choices=["blurred", "nsa","structural", "textural","cutpaste" ],value="nsa")
|
50 |
submit = gr.Button(
|
51 |
scale=1,
|
52 |
variant='primary'
|
source/cutpaste.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
class CutPaste(object):
|
7 |
+
|
8 |
+
def __init__(self, transform = True, type = 'binary'):
|
9 |
+
|
10 |
+
'''
|
11 |
+
This class creates to different augmentation CutPaste and CutPaste-Scar. Moreover, it returns augmented images
|
12 |
+
for binary and 3 way classification
|
13 |
+
|
14 |
+
:arg
|
15 |
+
:transform[binary]: - if True use Color Jitter augmentations for patches
|
16 |
+
:type[str]: options ['binary' or '3way'] - classification type
|
17 |
+
'''
|
18 |
+
self.type = type
|
19 |
+
if transform:
|
20 |
+
self.transform = transforms.ColorJitter(brightness = 0.1,
|
21 |
+
contrast = 0.1,
|
22 |
+
saturation = 0.1,
|
23 |
+
hue = 0.1)
|
24 |
+
else:
|
25 |
+
self.transform = None
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def crop_and_paste_patch(image, patch_w, patch_h, transform, rotation=False):
|
29 |
+
"""
|
30 |
+
Crop patch from original image and paste it randomly on the same image.
|
31 |
+
|
32 |
+
:image: [PIL] _ original image
|
33 |
+
:patch_w: [int] _ width of the patch
|
34 |
+
:patch_h: [int] _ height of the patch
|
35 |
+
:transform: [binary] _ if True use Color Jitter augmentation
|
36 |
+
:rotation: [binary[ _ if True randomly rotates image from (-45, 45) range
|
37 |
+
|
38 |
+
:return: augmented image
|
39 |
+
"""
|
40 |
+
|
41 |
+
org_w, org_h = image.size
|
42 |
+
mask = None
|
43 |
+
|
44 |
+
patch_left, patch_top = random.randint(0, org_w - patch_w), random.randint(0, org_h - patch_h)
|
45 |
+
patch_right, patch_bottom = patch_left + patch_w, patch_top + patch_h
|
46 |
+
patch = image.crop((patch_left, patch_top, patch_right, patch_bottom))
|
47 |
+
if transform:
|
48 |
+
patch= transform(patch)
|
49 |
+
|
50 |
+
if rotation:
|
51 |
+
random_rotate = random.uniform(*rotation)
|
52 |
+
patch = patch.convert("RGBA").rotate(random_rotate, expand=True)
|
53 |
+
mask = patch.split()[-1]
|
54 |
+
|
55 |
+
# new location
|
56 |
+
paste_left, paste_top = random.randint(0, org_w - patch_w), random.randint(0, org_h - patch_h)
|
57 |
+
aug_image = image.copy()
|
58 |
+
aug_image.paste(patch, (paste_left, paste_top), mask=mask)
|
59 |
+
|
60 |
+
# Create a mask of the pasted area
|
61 |
+
paste_right, paste_bottom = paste_left + patch_w, paste_top + patch_h
|
62 |
+
paste_mask = Image.new('L', image.size, 0)
|
63 |
+
paste_mask.paste(255, (paste_left, paste_top, paste_right, paste_bottom))
|
64 |
+
|
65 |
+
return aug_image,paste_mask
|
66 |
+
|
67 |
+
def cutpaste(self, image, area_ratio = (0.02, 0.15), aspect_ratio = ((0.3, 1) , (1, 3.3))):
|
68 |
+
'''
|
69 |
+
CutPaste augmentation
|
70 |
+
|
71 |
+
:image: [PIL] - original image
|
72 |
+
:area_ratio: [tuple] - range for area ratio for patch
|
73 |
+
:aspect_ratio: [tuple] - range for aspect ratio
|
74 |
+
|
75 |
+
:return: PIL image after CutPaste transformation
|
76 |
+
'''
|
77 |
+
|
78 |
+
img_area = image.size[0] * image.size[1]
|
79 |
+
patch_area = random.uniform(*area_ratio) * img_area
|
80 |
+
patch_aspect = random.choice([random.uniform(*aspect_ratio[0]), random.uniform(*aspect_ratio[1])])
|
81 |
+
patch_w = int(np.sqrt(patch_area*patch_aspect))
|
82 |
+
patch_h = int(np.sqrt(patch_area/patch_aspect))
|
83 |
+
cutpaste,paste_mask = self.crop_and_paste_patch(image, patch_w, patch_h, self.transform, rotation = False)
|
84 |
+
return cutpaste,paste_mask
|
85 |
+
|
86 |
+
def cutpaste_scar(self, image, width = [2,16], length = [10,25], rotation = (-45, 45)):
|
87 |
+
'''
|
88 |
+
|
89 |
+
:image: [PIL] - original image
|
90 |
+
:width: [list] - range for width of patch
|
91 |
+
:length: [list] - range for length of patch
|
92 |
+
:rotation: [tuple] - range for rotation
|
93 |
+
|
94 |
+
:return: PIL image after CutPaste-Scare transformation
|
95 |
+
'''
|
96 |
+
patch_w, patch_h = random.randint(*width), random.randint(*length)
|
97 |
+
cutpaste_scar,paste_mask = self.crop_and_paste_patch(image, patch_w, patch_h, self.transform, rotation = rotation)
|
98 |
+
return cutpaste_scar,paste_mask
|
99 |
+
|
100 |
+
def __call__(self, image):
|
101 |
+
'''
|
102 |
+
|
103 |
+
:image: [PIL] - original image
|
104 |
+
:return: if type == 'binary' returns original image and randomly chosen transformation, else it returns
|
105 |
+
original image, an image after CutPaste transformation and an image after CutPaste-Scar transformation
|
106 |
+
'''
|
107 |
+
if self.type == 'binary':
|
108 |
+
aug = random.choice([self.cutpaste, self.cutpaste_scar])
|
109 |
+
return image, aug(image)
|
110 |
+
|
111 |
+
elif self.type == '3way':
|
112 |
+
cutpaste = self.cutpaste(image)
|
113 |
+
scar = self.cutpaste_scar(image)
|
114 |
+
return image, cutpaste, scar
|
source/defectGenerator.py
CHANGED
@@ -8,6 +8,7 @@ import glob
|
|
8 |
from source.perlin import rand_perlin_2d_np
|
9 |
import matplotlib.pyplot as plt
|
10 |
from source.nsa import backGroundMask,patch_ex
|
|
|
11 |
|
12 |
class TexturalAnomalyGenerator():
|
13 |
def __init__(self, resize_shape=None,dtd_path="../../datasets/dtd/images"):
|
@@ -99,6 +100,7 @@ class DefectGenerator():
|
|
99 |
|
100 |
self.texturalAnomalyGenerator=TexturalAnomalyGenerator(resize_shape,dtd_path)
|
101 |
self.structuralAnomalyGenerator=StructuralAnomalyGenerator(resize_shape)
|
|
|
102 |
|
103 |
self.resize_shape=resize_shape
|
104 |
self.rot = iaa.Sequential([iaa.Affine(rotate=(-90, 90))])
|
@@ -165,11 +167,21 @@ class DefectGenerator():
|
|
165 |
msk = transform(msk)*255.0
|
166 |
return image,msk
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
|
170 |
def genSingleDefect(self,image,label,mskbg):
|
171 |
-
if label.lower() not in ["textural","structural","blurred","nsa"]:
|
172 |
-
raise ValueError("The defect type should be in ['textural','structural','blurred','nsa']")
|
173 |
|
174 |
if (label.lower()=="textural" or label.lower()=="structural" or label.lower()=="blurred"):
|
175 |
imageT=self.toTensor(image)
|
@@ -182,6 +194,9 @@ class DefectGenerator():
|
|
182 |
return self.generateBlurredDefectiveImage(imageT,bmask)
|
183 |
elif (label.lower()=="nsa"):
|
184 |
return self.generateNsaDefect(image,mskbg)
|
|
|
|
|
|
|
185 |
|
186 |
def genDefect(self,image,defectType,category="",return_list=False):
|
187 |
mskbg=backGroundMask(image,obj=category)
|
|
|
8 |
from source.perlin import rand_perlin_2d_np
|
9 |
import matplotlib.pyplot as plt
|
10 |
from source.nsa import backGroundMask,patch_ex
|
11 |
+
from source.cutpaste import CutPaste
|
12 |
|
13 |
class TexturalAnomalyGenerator():
|
14 |
def __init__(self, resize_shape=None,dtd_path="../../datasets/dtd/images"):
|
|
|
100 |
|
101 |
self.texturalAnomalyGenerator=TexturalAnomalyGenerator(resize_shape,dtd_path)
|
102 |
self.structuralAnomalyGenerator=StructuralAnomalyGenerator(resize_shape)
|
103 |
+
self.cutpaste=CutPaste()
|
104 |
|
105 |
self.resize_shape=resize_shape
|
106 |
self.rot = iaa.Sequential([iaa.Affine(rotate=(-90, 90))])
|
|
|
167 |
msk = transform(msk)*255.0
|
168 |
return image,msk
|
169 |
|
170 |
+
def generateCutPasteDefect(self, image,bMask):
|
171 |
+
msk=np.zeros((self.resize_shape[0], self.resize_shape[1]))
|
172 |
+
while (np.count_nonzero(msk)<100):
|
173 |
+
defect,cpmsk=self.cutpaste.cutpaste(image)
|
174 |
+
msk=bMask*np.expand_dims(np.array(cpmsk),axis=2)
|
175 |
+
image=np.array(defect)*bMask + np.array(image)*(1-bMask)
|
176 |
+
transform=T.ToTensor()
|
177 |
+
image = transform(image)
|
178 |
+
msk = transform(msk)
|
179 |
+
return image,msk
|
180 |
|
181 |
|
182 |
def genSingleDefect(self,image,label,mskbg):
|
183 |
+
if label.lower() not in ["textural","structural","blurred","nsa","cutpaste"]:
|
184 |
+
raise ValueError("The defect type should be in ['textural','structural','blurred','nsa','cutpaste']")
|
185 |
|
186 |
if (label.lower()=="textural" or label.lower()=="structural" or label.lower()=="blurred"):
|
187 |
imageT=self.toTensor(image)
|
|
|
194 |
return self.generateBlurredDefectiveImage(imageT,bmask)
|
195 |
elif (label.lower()=="nsa"):
|
196 |
return self.generateNsaDefect(image,mskbg)
|
197 |
+
elif (label.lower()=="cutpaste"):
|
198 |
+
return self.generateCutPasteDefect(image,mskbg)
|
199 |
+
|
200 |
|
201 |
def genDefect(self,image,defectType,category="",return_list=False):
|
202 |
mskbg=backGroundMask(image,obj=category)
|