update language function
Browse files- app.py +3 -3
- language.py +2 -13
app.py
CHANGED
@@ -9,13 +9,13 @@ import os
|
|
9 |
|
10 |
st.write('Part 1')
|
11 |
|
12 |
-
|
13 |
url = st.text_input('mettez le liens de votre image')
|
14 |
|
15 |
if st.button('générer'):
|
16 |
-
responseBase = image(url,
|
17 |
st.write('response is :', responseBase)
|
18 |
st.write('Part 2')
|
19 |
-
st.write(longText(responseBase))
|
20 |
|
21 |
print('#### TEST 2####')
|
|
|
9 |
|
10 |
st.write('Part 1')
|
11 |
|
12 |
+
question = st.text_input('Posez votre question (en anglais)')
|
13 |
url = st.text_input('mettez le liens de votre image')
|
14 |
|
15 |
if st.button('générer'):
|
16 |
+
responseBase = image(url, question)
|
17 |
st.write('response is :', responseBase)
|
18 |
st.write('Part 2')
|
19 |
+
st.write(longText(responseBase, question))
|
20 |
|
21 |
print('#### TEST 2####')
|
language.py
CHANGED
@@ -1,21 +1,10 @@
|
|
1 |
print('###### LANGUAGES ######')
|
2 |
-
|
3 |
-
input_text = "i have question and answere.\
|
4 |
-
the question is : How many cars here ?\
|
5 |
-
the response is : 2\
|
6 |
-
with this information, can you crate an answere phrase"
|
7 |
-
|
8 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
9 |
|
10 |
-
|
11 |
-
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
12 |
-
|
13 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
14 |
|
15 |
-
|
16 |
-
print(tokenizer.decode(outputs[0]))
|
17 |
|
18 |
-
def longText(input_text):
|
19 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
20 |
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
21 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
|
|
1 |
print('###### LANGUAGES ######')
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
|
4 |
+
def longText(answere, question):
|
|
|
|
|
|
|
5 |
|
6 |
+
input_text = "i have a question and answer.\nthe question is :",question,"\n the response is :",answere,"\n with this information, can you create an answer phrase?"
|
|
|
7 |
|
|
|
8 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
9 |
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
10 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|