DiffSinger / utils /pl_utils.py
ddd
Add application file
b93970c
import matplotlib
from torch.nn import DataParallel
from torch.nn.parallel import DistributedDataParallel
matplotlib.use('Agg')
import glob
import itertools
import subprocess
import threading
import traceback
from pytorch_lightning.callbacks import GradientAccumulationScheduler
from pytorch_lightning.callbacks import ModelCheckpoint
from functools import wraps
from torch.cuda._utils import _get_device_index
import numpy as np
import torch.optim
import torch.utils.data
import copy
import logging
import os
import re
import sys
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import tqdm
from torch.optim.optimizer import Optimizer
def get_a_var(obj): # pragma: no cover
if isinstance(obj, torch.Tensor):
return obj
if isinstance(obj, list) or isinstance(obj, tuple):
for result in map(get_a_var, obj):
if isinstance(result, torch.Tensor):
return result
if isinstance(obj, dict):
for result in map(get_a_var, obj.items()):
if isinstance(result, torch.Tensor):
return result
return None
def data_loader(fn):
"""
Decorator to make any fx with this use the lazy property
:param fn:
:return:
"""
wraps(fn)
attr_name = '_lazy_' + fn.__name__
def _get_data_loader(self):
try:
value = getattr(self, attr_name)
except AttributeError:
try:
value = fn(self) # Lazy evaluation, done only once.
if (
value is not None and
not isinstance(value, list) and
fn.__name__ in ['test_dataloader', 'val_dataloader']
):
value = [value]
except AttributeError as e:
# Guard against AttributeError suppression. (Issue #142)
traceback.print_exc()
error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e)
raise RuntimeError(error) from e
setattr(self, attr_name, value) # Memoize evaluation.
return value
return _get_data_loader
def parallel_apply(modules, inputs, kwargs_tup=None, devices=None): # pragma: no cover
r"""Applies each `module` in :attr:`modules` in parallel on arguments
contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword)
on each of :attr:`devices`.
Args:
modules (Module): modules to be parallelized
inputs (tensor): inputs to the modules
devices (list of int or torch.device): CUDA devices
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
:attr:`devices` (if given) should all have same length. Moreover, each
element of :attr:`inputs` can either be a single object as the only argument
to a module, or a collection of positional arguments.
"""
assert len(modules) == len(inputs)
if kwargs_tup is not None:
assert len(modules) == len(kwargs_tup)
else:
kwargs_tup = ({},) * len(modules)
if devices is not None:
assert len(modules) == len(devices)
else:
devices = [None] * len(modules)
devices = list(map(lambda x: _get_device_index(x, True), devices))
lock = threading.Lock()
results = {}
grad_enabled = torch.is_grad_enabled()
def _worker(i, module, input, kwargs, device=None):
torch.set_grad_enabled(grad_enabled)
if device is None:
device = get_a_var(input).get_device()
try:
with torch.cuda.device(device):
# this also avoids accidental slicing of `input` if it is a Tensor
if not isinstance(input, (list, tuple)):
input = (input,)
# ---------------
# CHANGE
if module.training:
output = module.training_step(*input, **kwargs)
elif module.testing:
output = module.test_step(*input, **kwargs)
else:
output = module.validation_step(*input, **kwargs)
# ---------------
with lock:
results[i] = output
except Exception as e:
with lock:
results[i] = e
# make sure each module knows what training state it's in...
# fixes weird bug where copies are out of sync
root_m = modules[0]
for m in modules[1:]:
m.training = root_m.training
m.testing = root_m.testing
if len(modules) > 1:
threads = [threading.Thread(target=_worker,
args=(i, module, input, kwargs, device))
for i, (module, input, kwargs, device) in
enumerate(zip(modules, inputs, kwargs_tup, devices))]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0])
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, Exception):
raise output
outputs.append(output)
return outputs
def _find_tensors(obj): # pragma: no cover
r"""
Recursively find all tensors contained in the specified object.
"""
if isinstance(obj, torch.Tensor):
return [obj]
if isinstance(obj, (list, tuple)):
return itertools.chain(*map(_find_tensors, obj))
if isinstance(obj, dict):
return itertools.chain(*map(_find_tensors, obj.values()))
return []
class DDP(DistributedDataParallel):
"""
Override the forward call in lightning so it goes to training and validation step respectively
"""
def parallel_apply(self, replicas, inputs, kwargs):
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
def forward(self, *inputs, **kwargs): # pragma: no cover
self._sync_params()
if self.device_ids:
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
if len(self.device_ids) == 1:
# --------------
# LIGHTNING MOD
# --------------
# normal
# output = self.module(*inputs[0], **kwargs[0])
# lightning
if self.module.training:
output = self.module.training_step(*inputs[0], **kwargs[0])
elif self.module.testing:
output = self.module.test_step(*inputs[0], **kwargs[0])
else:
output = self.module.validation_step(*inputs[0], **kwargs[0])
else:
outputs = self.parallel_apply(self._module_copies[:len(inputs)], inputs, kwargs)
output = self.gather(outputs, self.output_device)
else:
# normal
output = self.module(*inputs, **kwargs)
if torch.is_grad_enabled():
# We'll return the output object verbatim since it is a freeform
# object. We need to find any tensors in this object, though,
# because we need to figure out which parameters were used during
# this forward pass, to ensure we short circuit reduction for any
# unused parameters. Only if `find_unused_parameters` is set.
if self.find_unused_parameters:
self.reducer.prepare_for_backward(list(_find_tensors(output)))
else:
self.reducer.prepare_for_backward([])
return output
class DP(DataParallel):
"""
Override the forward call in lightning so it goes to training and validation step respectively
"""
def forward(self, *inputs, **kwargs):
if not self.device_ids:
return self.module(*inputs, **kwargs)
for t in itertools.chain(self.module.parameters(), self.module.buffers()):
if t.device != self.src_device_obj:
raise RuntimeError("module must have its parameters and buffers "
"on device {} (device_ids[0]) but found one of "
"them on device: {}".format(self.src_device_obj, t.device))
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
if len(self.device_ids) == 1:
# lightning
if self.module.training:
return self.module.training_step(*inputs[0], **kwargs[0])
elif self.module.testing:
return self.module.test_step(*inputs[0], **kwargs[0])
else:
return self.module.validation_step(*inputs[0], **kwargs[0])
replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
outputs = self.parallel_apply(replicas, inputs, kwargs)
return self.gather(outputs, self.output_device)
def parallel_apply(self, replicas, inputs, kwargs):
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
class GradientAccumulationScheduler:
def __init__(self, scheduling: dict):
if scheduling == {}: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
for key in scheduling.keys():
if not isinstance(key, int) or not isinstance(scheduling[key], int):
raise TypeError("All epoches and accumulation factor must be integers")
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 1:
msg = f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct"
raise IndexError(msg)
elif minimal_epoch != 1: # if user didnt define first epoch accumulation factor
scheduling.update({1: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def on_epoch_begin(self, epoch, trainer):
epoch += 1 # indexing epochs from 1
for i in reversed(range(len(self.epochs))):
if epoch >= self.epochs[i]:
trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i])
break
class LatestModelCheckpoint(ModelCheckpoint):
def __init__(self, filepath, monitor='val_loss', verbose=0, num_ckpt_keep=5,
save_weights_only=False, mode='auto', period=1, prefix='model', save_best=True):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
os.makedirs(filepath, exist_ok=True)
self.num_ckpt_keep = num_ckpt_keep
self.save_best = save_best
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_check = 0
self.prefix = prefix
self.best_k_models = {}
# {filename: monitor}
self.kth_best_model = ''
self.save_top_k = 1
self.task = None
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
self.mode = 'min'
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
self.mode = 'max'
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
self.mode = 'max'
else:
self.monitor_op = np.less
self.best = np.Inf
self.mode = 'min'
if os.path.exists(f'{self.filepath}/best_valid.npy'):
self.best = np.load(f'{self.filepath}/best_valid.npy')[0]
def get_all_ckpts(self):
return sorted(glob.glob(f'{self.filepath}/{self.prefix}_ckpt_steps_*.ckpt'),
key=lambda x: -int(re.findall('.*steps\_(\d+)\.ckpt', x)[0]))
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_check += 1
best_filepath = f'{self.filepath}/{self.prefix}_ckpt_best.pt'
if self.epochs_since_last_check >= self.period:
self.epochs_since_last_check = 0
filepath = f'{self.filepath}/{self.prefix}_ckpt_steps_{self.task.global_step}.ckpt'
if self.verbose > 0:
logging.info(f'Epoch {epoch:05d}@{self.task.global_step}: saving model to {filepath}')
self._save_model(filepath)
for old_ckpt in self.get_all_ckpts()[self.num_ckpt_keep:]:
subprocess.check_call(f'rm -rf "{old_ckpt}"', shell=True)
if self.verbose > 0:
logging.info(f'Delete ckpt: {os.path.basename(old_ckpt)}')
current = logs.get(self.monitor)
if current is not None and self.save_best:
if self.monitor_op(current, self.best):
self.best = current
if self.verbose > 0:
logging.info(
f'Epoch {epoch:05d}@{self.task.global_step}: {self.monitor} reached'
f' {current:0.5f} (best {self.best:0.5f}), saving model to'
f' {best_filepath} as top 1')
self._save_model(best_filepath)
np.save(f'{self.filepath}/best_valid.npy', [self.best])
class BaseTrainer:
def __init__(
self,
logger=True,
checkpoint_callback=True,
default_save_path=None,
gradient_clip_val=0,
process_position=0,
gpus=-1,
log_gpu_memory=None,
show_progress_bar=True,
track_grad_norm=-1,
check_val_every_n_epoch=1,
accumulate_grad_batches=1,
max_updates=1000,
min_epochs=1,
val_check_interval=1.0,
log_save_interval=100,
row_log_interval=10,
print_nan_grads=False,
weights_summary='full',
num_sanity_val_steps=5,
resume_from_checkpoint=None,
):
self.log_gpu_memory = log_gpu_memory
self.gradient_clip_val = gradient_clip_val
self.check_val_every_n_epoch = check_val_every_n_epoch
self.track_grad_norm = track_grad_norm
self.on_gpu = True if (gpus and torch.cuda.is_available()) else False
self.process_position = process_position
self.weights_summary = weights_summary
self.max_updates = max_updates
self.min_epochs = min_epochs
self.num_sanity_val_steps = num_sanity_val_steps
self.print_nan_grads = print_nan_grads
self.resume_from_checkpoint = resume_from_checkpoint
self.default_save_path = default_save_path
# training bookeeping
self.total_batch_idx = 0
self.running_loss = []
self.avg_loss = 0
self.batch_idx = 0
self.tqdm_metrics = {}
self.callback_metrics = {}
self.num_val_batches = 0
self.num_training_batches = 0
self.num_test_batches = 0
self.get_train_dataloader = None
self.get_test_dataloaders = None
self.get_val_dataloaders = None
self.is_iterable_train_dataloader = False
# training state
self.model = None
self.testing = False
self.disable_validation = False
self.lr_schedulers = []
self.optimizers = None
self.global_step = 0
self.current_epoch = 0
self.total_batches = 0
# configure checkpoint callback
self.checkpoint_callback = checkpoint_callback
self.checkpoint_callback.save_function = self.save_checkpoint
self.weights_save_path = self.checkpoint_callback.filepath
# accumulated grads
self.configure_accumulated_gradients(accumulate_grad_batches)
# allow int, string and gpu list
self.data_parallel_device_ids = [
int(x) for x in os.environ.get("CUDA_VISIBLE_DEVICES", "").split(",") if x != '']
if len(self.data_parallel_device_ids) == 0:
self.root_gpu = None
self.on_gpu = False
else:
self.root_gpu = self.data_parallel_device_ids[0]
self.on_gpu = True
# distributed backend choice
self.use_ddp = False
self.use_dp = False
self.single_gpu = False
self.distributed_backend = 'ddp' if self.num_gpus > 0 else 'dp'
self.set_distributed_mode(self.distributed_backend)
self.proc_rank = 0
self.world_size = 1
self.node_rank = 0
# can't init progress bar here because starting a new process
# means the progress_bar won't survive pickling
self.show_progress_bar = show_progress_bar
# logging
self.log_save_interval = log_save_interval
self.val_check_interval = val_check_interval
self.logger = logger
self.logger.rank = 0
self.row_log_interval = row_log_interval
@property
def num_gpus(self):
gpus = self.data_parallel_device_ids
if gpus is None:
return 0
else:
return len(gpus)
@property
def data_parallel(self):
return self.use_dp or self.use_ddp
def get_model(self):
is_dp_module = isinstance(self.model, (DDP, DP))
model = self.model.module if is_dp_module else self.model
return model
# -----------------------------
# MODEL TRAINING
# -----------------------------
def fit(self, model):
if self.use_ddp:
mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model,))
else:
model.model = model.build_model()
if not self.testing:
self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers())
if self.use_dp:
model.cuda(self.root_gpu)
model = DP(model, device_ids=self.data_parallel_device_ids)
elif self.single_gpu:
model.cuda(self.root_gpu)
self.run_pretrain_routine(model)
return 1
def init_optimizers(self, optimizers):
# single optimizer
if isinstance(optimizers, Optimizer):
return [optimizers], []
# two lists
elif len(optimizers) == 2 and isinstance(optimizers[0], list):
optimizers, lr_schedulers = optimizers
return optimizers, lr_schedulers
# single list or tuple
elif isinstance(optimizers, list) or isinstance(optimizers, tuple):
return optimizers, []
def run_pretrain_routine(self, model):
"""Sanity check a few things before starting actual training.
:param model:
"""
ref_model = model
if self.data_parallel:
ref_model = model.module
# give model convenience properties
ref_model.trainer = self
# set local properties on the model
self.copy_trainer_model_properties(ref_model)
# link up experiment object
if self.logger is not None:
ref_model.logger = self.logger
self.logger.save()
if self.use_ddp:
dist.barrier()
# set up checkpoint callback
# self.configure_checkpoint_callback()
# transfer data loaders from model
self.get_dataloaders(ref_model)
# track model now.
# if cluster resets state, the model will update with the saved weights
self.model = model
# restore training and model before hpc call
self.restore_weights(model)
# when testing requested only run test and return
if self.testing:
self.run_evaluation(test=True)
return
# check if we should run validation during training
self.disable_validation = self.num_val_batches == 0
# run tiny validation (if validation defined)
# to make sure program won't crash during val
ref_model.on_sanity_check_start()
ref_model.on_train_start()
if not self.disable_validation and self.num_sanity_val_steps > 0:
# init progress bars for validation sanity check
pbar = tqdm.tqdm(desc='Validation sanity check',
total=self.num_sanity_val_steps * len(self.get_val_dataloaders()),
leave=False, position=2 * self.process_position,
disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch')
self.main_progress_bar = pbar
# dummy validation progress bar
self.val_progress_bar = tqdm.tqdm(disable=True)
self.evaluate(model, self.get_val_dataloaders(), self.num_sanity_val_steps, self.testing)
# close progress bars
self.main_progress_bar.close()
self.val_progress_bar.close()
# init progress bar
pbar = tqdm.tqdm(leave=True, position=2 * self.process_position,
disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch',
file=sys.stdout)
self.main_progress_bar = pbar
# clear cache before training
if self.on_gpu:
torch.cuda.empty_cache()
# CORE TRAINING LOOP
self.train()
def test(self, model):
self.testing = True
self.fit(model)
@property
def training_tqdm_dict(self):
tqdm_dict = {
'step': '{}'.format(self.global_step),
}
tqdm_dict.update(self.tqdm_metrics)
return tqdm_dict
# --------------------
# restore ckpt
# --------------------
def restore_weights(self, model):
"""
To restore weights we have two cases.
First, attempt to restore hpc weights. If successful, don't restore
other weights.
Otherwise, try to restore actual weights
:param model:
:return:
"""
# clear cache before restore
if self.on_gpu:
torch.cuda.empty_cache()
if self.resume_from_checkpoint is not None:
self.restore(self.resume_from_checkpoint, on_gpu=self.on_gpu)
else:
# restore weights if same exp version
self.restore_state_if_checkpoint_exists(model)
# wait for all models to restore weights
if self.use_ddp:
# wait for all processes to catch up
dist.barrier()
# clear cache after restore
if self.on_gpu:
torch.cuda.empty_cache()
def restore_state_if_checkpoint_exists(self, model):
did_restore = False
# do nothing if there's not dir or callback
no_ckpt_callback = (self.checkpoint_callback is None) or (not self.checkpoint_callback)
if no_ckpt_callback or not os.path.exists(self.checkpoint_callback.filepath):
return did_restore
# restore trainer state and model if there is a weight for this experiment
last_steps = -1
last_ckpt_name = None
# find last epoch
checkpoints = os.listdir(self.checkpoint_callback.filepath)
for name in checkpoints:
if '.ckpt' in name and not name.endswith('part'):
if 'steps_' in name:
steps = name.split('steps_')[1]
steps = int(re.sub('[^0-9]', '', steps))
if steps > last_steps:
last_steps = steps
last_ckpt_name = name
# restore last checkpoint
if last_ckpt_name is not None:
last_ckpt_path = os.path.join(self.checkpoint_callback.filepath, last_ckpt_name)
self.restore(last_ckpt_path, self.on_gpu)
logging.info(f'model and trainer restored from checkpoint: {last_ckpt_path}')
did_restore = True
return did_restore
def restore(self, checkpoint_path, on_gpu):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
# load model state
model = self.get_model()
# load the state_dict on the model automatically
model.load_state_dict(checkpoint['state_dict'], strict=False)
if on_gpu:
model.cuda(self.root_gpu)
# load training state (affects trainer only)
self.restore_training_state(checkpoint)
model.global_step = self.global_step
del checkpoint
try:
if dist.is_initialized() and dist.get_rank() > 0:
return
except Exception as e:
print(e)
return
def restore_training_state(self, checkpoint):
"""
Restore trainer state.
Model will get its change to update
:param checkpoint:
:return:
"""
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
self.checkpoint_callback.best = checkpoint['checkpoint_callback_best']
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['epoch']
if self.testing:
return
# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
if optimizer is None:
return
optimizer.load_state_dict(opt_state)
# move optimizer to GPU 1 weight at a time
# avoids OOM
if self.root_gpu is not None:
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda(self.root_gpu)
# restore the lr schedulers
lr_schedulers = checkpoint['lr_schedulers']
for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers):
scheduler.load_state_dict(lrs_state)
# --------------------
# MODEL SAVE CHECKPOINT
# --------------------
def _atomic_save(self, checkpoint, filepath):
"""Saves a checkpoint atomically, avoiding the creation of incomplete checkpoints.
This will create a temporary checkpoint with a suffix of ``.part``, then copy it to the final location once
saving is finished.
Args:
checkpoint (object): The object to save.
Built to be used with the ``dump_checkpoint`` method, but can deal with anything which ``torch.save``
accepts.
filepath (str|pathlib.Path): The path to which the checkpoint will be saved.
This points to the file that the checkpoint will be stored in.
"""
tmp_path = str(filepath) + ".part"
torch.save(checkpoint, tmp_path)
os.replace(tmp_path, filepath)
def save_checkpoint(self, filepath):
checkpoint = self.dump_checkpoint()
self._atomic_save(checkpoint, filepath)
def dump_checkpoint(self):
checkpoint = {
'epoch': self.current_epoch,
'global_step': self.global_step
}
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
checkpoint['checkpoint_callback_best'] = self.checkpoint_callback.best
# save optimizers
optimizer_states = []
for i, optimizer in enumerate(self.optimizers):
if optimizer is not None:
optimizer_states.append(optimizer.state_dict())
checkpoint['optimizer_states'] = optimizer_states
# save lr schedulers
lr_schedulers = []
for i, scheduler in enumerate(self.lr_schedulers):
lr_schedulers.append(scheduler.state_dict())
checkpoint['lr_schedulers'] = lr_schedulers
# add the hparams and state_dict from the model
model = self.get_model()
checkpoint['state_dict'] = model.state_dict()
# give the model a chance to add a few things
model.on_save_checkpoint(checkpoint)
return checkpoint
def copy_trainer_model_properties(self, model):
if isinstance(model, DP):
ref_model = model.module
elif isinstance(model, DDP):
ref_model = model.module
else:
ref_model = model
for m in [model, ref_model]:
m.trainer = self
m.on_gpu = self.on_gpu
m.use_dp = self.use_dp
m.use_ddp = self.use_ddp
m.testing = self.testing
m.single_gpu = self.single_gpu
def transfer_batch_to_gpu(self, batch, gpu_id):
# base case: object can be directly moved using `cuda` or `to`
if callable(getattr(batch, 'cuda', None)):
return batch.cuda(gpu_id, non_blocking=True)
elif callable(getattr(batch, 'to', None)):
return batch.to(torch.device('cuda', gpu_id), non_blocking=True)
# when list
elif isinstance(batch, list):
for i, x in enumerate(batch):
batch[i] = self.transfer_batch_to_gpu(x, gpu_id)
return batch
# when tuple
elif isinstance(batch, tuple):
batch = list(batch)
for i, x in enumerate(batch):
batch[i] = self.transfer_batch_to_gpu(x, gpu_id)
return tuple(batch)
# when dict
elif isinstance(batch, dict):
for k, v in batch.items():
batch[k] = self.transfer_batch_to_gpu(v, gpu_id)
return batch
# nothing matches, return the value as is without transform
return batch
def set_distributed_mode(self, distributed_backend):
# skip for CPU
if self.num_gpus == 0:
return
# single GPU case
# in single gpu case we allow ddp so we can train on multiple
# nodes, 1 gpu per node
elif self.num_gpus == 1:
self.single_gpu = True
self.use_dp = False
self.use_ddp = False
self.root_gpu = 0
self.data_parallel_device_ids = [0]
else:
if distributed_backend is not None:
self.use_dp = distributed_backend == 'dp'
self.use_ddp = distributed_backend == 'ddp'
elif distributed_backend is None:
self.use_dp = True
self.use_ddp = False
logging.info(f'gpu available: {torch.cuda.is_available()}, used: {self.on_gpu}')
def ddp_train(self, gpu_idx, model):
"""
Entry point into a DP thread
:param gpu_idx:
:param model:
:param cluster_obj:
:return:
"""
# otherwise default to node rank 0
self.node_rank = 0
# show progressbar only on progress_rank 0
self.show_progress_bar = self.show_progress_bar and self.node_rank == 0 and gpu_idx == 0
# determine which process we are and world size
if self.use_ddp:
self.proc_rank = self.node_rank * self.num_gpus + gpu_idx
self.world_size = self.num_gpus
# let the exp know the rank to avoid overwriting logs
if self.logger is not None:
self.logger.rank = self.proc_rank
# set up server using proc 0's ip address
# try to init for 20 times at max in case ports are taken
# where to store ip_table
model.trainer = self
model.init_ddp_connection(self.proc_rank, self.world_size)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
model.model = model.build_model()
if not self.testing:
self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers())
# MODEL
# copy model to each gpu
if self.distributed_backend == 'ddp':
torch.cuda.set_device(gpu_idx)
model.cuda(gpu_idx)
# set model properties before going into wrapper
self.copy_trainer_model_properties(model)
# override root GPU
self.root_gpu = gpu_idx
if self.distributed_backend == 'ddp':
device_ids = [gpu_idx]
else:
device_ids = None
# allow user to configure ddp
model = model.configure_ddp(model, device_ids)
# continue training routine
self.run_pretrain_routine(model)
def resolve_root_node_address(self, root_node):
if '[' in root_node:
name = root_node.split('[')[0]
number = root_node.split(',')[0]
if '-' in number:
number = number.split('-')[0]
number = re.sub('[^0-9]', '', number)
root_node = name + number
return root_node
def log_metrics(self, metrics, grad_norm_dic, step=None):
"""Logs the metric dict passed in.
:param metrics:
:param grad_norm_dic:
"""
# added metrics by Lightning for convenience
metrics['epoch'] = self.current_epoch
# add norms
metrics.update(grad_norm_dic)
# turn all tensors to scalars
scalar_metrics = self.metrics_to_scalars(metrics)
step = step if step is not None else self.global_step
# log actual metrics
if self.proc_rank == 0 and self.logger is not None:
self.logger.log_metrics(scalar_metrics, step=step)
self.logger.save()
def add_tqdm_metrics(self, metrics):
for k, v in metrics.items():
if type(v) is torch.Tensor:
v = v.item()
self.tqdm_metrics[k] = v
def metrics_to_scalars(self, metrics):
new_metrics = {}
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
if type(v) is dict:
v = self.metrics_to_scalars(v)
new_metrics[k] = v
return new_metrics
def process_output(self, output, train=False):
"""Reduces output according to the training mode.
Separates loss from logging and tqdm metrics
:param output:
:return:
"""
# ---------------
# EXTRACT CALLBACK KEYS
# ---------------
# all keys not progress_bar or log are candidates for callbacks
callback_metrics = {}
for k, v in output.items():
if k not in ['progress_bar', 'log', 'hiddens']:
callback_metrics[k] = v
if train and self.use_dp:
num_gpus = self.num_gpus
callback_metrics = self.reduce_distributed_output(callback_metrics, num_gpus)
for k, v in callback_metrics.items():
if isinstance(v, torch.Tensor):
callback_metrics[k] = v.item()
# ---------------
# EXTRACT PROGRESS BAR KEYS
# ---------------
try:
progress_output = output['progress_bar']
# reduce progress metrics for tqdm when using dp
if train and self.use_dp:
num_gpus = self.num_gpus
progress_output = self.reduce_distributed_output(progress_output, num_gpus)
progress_bar_metrics = progress_output
except Exception:
progress_bar_metrics = {}
# ---------------
# EXTRACT LOGGING KEYS
# ---------------
# extract metrics to log to experiment
try:
log_output = output['log']
# reduce progress metrics for tqdm when using dp
if train and self.use_dp:
num_gpus = self.num_gpus
log_output = self.reduce_distributed_output(log_output, num_gpus)
log_metrics = log_output
except Exception:
log_metrics = {}
# ---------------
# EXTRACT LOSS
# ---------------
# if output dict doesn't have the keyword loss
# then assume the output=loss if scalar
loss = None
if train:
try:
loss = output['loss']
except Exception:
if type(output) is torch.Tensor:
loss = output
else:
raise RuntimeError(
'No `loss` value in the dictionary returned from `model.training_step()`.'
)
# when using dp need to reduce the loss
if self.use_dp:
loss = self.reduce_distributed_output(loss, self.num_gpus)
# ---------------
# EXTRACT HIDDEN
# ---------------
hiddens = output.get('hiddens')
# use every metric passed in as a candidate for callback
callback_metrics.update(progress_bar_metrics)
callback_metrics.update(log_metrics)
# convert tensors to numpy
for k, v in callback_metrics.items():
if isinstance(v, torch.Tensor):
callback_metrics[k] = v.item()
return loss, progress_bar_metrics, log_metrics, callback_metrics, hiddens
def reduce_distributed_output(self, output, num_gpus):
if num_gpus <= 1:
return output
# when using DP, we get one output per gpu
# average outputs and return
if type(output) is torch.Tensor:
return output.mean()
for k, v in output.items():
# recurse on nested dics
if isinstance(output[k], dict):
output[k] = self.reduce_distributed_output(output[k], num_gpus)
# do nothing when there's a scalar
elif isinstance(output[k], torch.Tensor) and output[k].dim() == 0:
pass
# reduce only metrics that have the same number of gpus
elif output[k].size(0) == num_gpus:
reduced = torch.mean(output[k])
output[k] = reduced
return output
def clip_gradients(self):
if self.gradient_clip_val > 0:
model = self.get_model()
torch.nn.utils.clip_grad_norm_(model.parameters(), self.gradient_clip_val)
def print_nan_gradients(self):
model = self.get_model()
for param in model.parameters():
if (param.grad is not None) and torch.isnan(param.grad.float()).any():
logging.info(param, param.grad)
def configure_accumulated_gradients(self, accumulate_grad_batches):
self.accumulate_grad_batches = None
if isinstance(accumulate_grad_batches, dict):
self.accumulation_scheduler = GradientAccumulationScheduler(accumulate_grad_batches)
elif isinstance(accumulate_grad_batches, int):
schedule = {1: accumulate_grad_batches}
self.accumulation_scheduler = GradientAccumulationScheduler(schedule)
else:
raise TypeError("Gradient accumulation supports only int and dict types")
def get_dataloaders(self, model):
if not self.testing:
self.init_train_dataloader(model)
self.init_val_dataloader(model)
else:
self.init_test_dataloader(model)
if self.use_ddp:
dist.barrier()
if not self.testing:
self.get_train_dataloader()
self.get_val_dataloaders()
else:
self.get_test_dataloaders()
def init_train_dataloader(self, model):
self.fisrt_epoch = True
self.get_train_dataloader = model.train_dataloader
if isinstance(self.get_train_dataloader(), torch.utils.data.DataLoader):
self.num_training_batches = len(self.get_train_dataloader())
self.num_training_batches = int(self.num_training_batches)
else:
self.num_training_batches = float('inf')
self.is_iterable_train_dataloader = True
if isinstance(self.val_check_interval, int):
self.val_check_batch = self.val_check_interval
else:
self._percent_range_check('val_check_interval')
self.val_check_batch = int(self.num_training_batches * self.val_check_interval)
self.val_check_batch = max(1, self.val_check_batch)
def init_val_dataloader(self, model):
self.get_val_dataloaders = model.val_dataloader
self.num_val_batches = 0
if self.get_val_dataloaders() is not None:
if isinstance(self.get_val_dataloaders()[0], torch.utils.data.DataLoader):
self.num_val_batches = sum(len(dataloader) for dataloader in self.get_val_dataloaders())
self.num_val_batches = int(self.num_val_batches)
else:
self.num_val_batches = float('inf')
def init_test_dataloader(self, model):
self.get_test_dataloaders = model.test_dataloader
if self.get_test_dataloaders() is not None:
if isinstance(self.get_test_dataloaders()[0], torch.utils.data.DataLoader):
self.num_test_batches = sum(len(dataloader) for dataloader in self.get_test_dataloaders())
self.num_test_batches = int(self.num_test_batches)
else:
self.num_test_batches = float('inf')
def evaluate(self, model, dataloaders, max_batches, test=False):
"""Run evaluation code.
:param model: PT model
:param dataloaders: list of PT dataloaders
:param max_batches: Scalar
:param test: boolean
:return:
"""
# enable eval mode
model.zero_grad()
model.eval()
# copy properties for forward overrides
self.copy_trainer_model_properties(model)
# disable gradients to save memory
torch.set_grad_enabled(False)
if test:
self.get_model().test_start()
# bookkeeping
outputs = []
# run training
for dataloader_idx, dataloader in enumerate(dataloaders):
dl_outputs = []
for batch_idx, batch in enumerate(dataloader):
if batch is None: # pragma: no cover
continue
# stop short when on fast_dev_run (sets max_batch=1)
if batch_idx >= max_batches:
break
# -----------------
# RUN EVALUATION STEP
# -----------------
output = self.evaluation_forward(model,
batch,
batch_idx,
dataloader_idx,
test)
# track outputs for collation
dl_outputs.append(output)
# batch done
if test:
self.test_progress_bar.update(1)
else:
self.val_progress_bar.update(1)
outputs.append(dl_outputs)
# with a single dataloader don't pass an array
if len(dataloaders) == 1:
outputs = outputs[0]
# give model a chance to do something with the outputs (and method defined)
model = self.get_model()
if test:
eval_results_ = model.test_end(outputs)
else:
eval_results_ = model.validation_end(outputs)
eval_results = eval_results_
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
return eval_results
def run_evaluation(self, test=False):
# when testing make sure user defined a test step
model = self.get_model()
model.on_pre_performance_check()
# select dataloaders
if test:
dataloaders = self.get_test_dataloaders()
max_batches = self.num_test_batches
else:
# val
dataloaders = self.get_val_dataloaders()
max_batches = self.num_val_batches
# init validation or test progress bar
# main progress bar will already be closed when testing so initial position is free
position = 2 * self.process_position + (not test)
desc = 'Testing' if test else 'Validating'
pbar = tqdm.tqdm(desc=desc, total=max_batches, leave=test, position=position,
disable=not self.show_progress_bar, dynamic_ncols=True,
unit='batch', file=sys.stdout)
setattr(self, f'{"test" if test else "val"}_progress_bar', pbar)
# run evaluation
eval_results = self.evaluate(self.model,
dataloaders,
max_batches,
test)
if eval_results is not None:
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(
eval_results)
# add metrics to prog bar
self.add_tqdm_metrics(prog_bar_metrics)
# log metrics
self.log_metrics(log_metrics, {})
# track metrics for callbacks
self.callback_metrics.update(callback_metrics)
# hook
model.on_post_performance_check()
# add model specific metrics
tqdm_metrics = self.training_tqdm_dict
if not test:
self.main_progress_bar.set_postfix(**tqdm_metrics)
# close progress bar
if test:
self.test_progress_bar.close()
else:
self.val_progress_bar.close()
# model checkpointing
if self.proc_rank == 0 and self.checkpoint_callback is not None and not test:
self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch,
logs=self.callback_metrics)
def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test=False):
# make dataloader_idx arg in validation_step optional
args = [batch, batch_idx]
if test and len(self.get_test_dataloaders()) > 1:
args.append(dataloader_idx)
elif not test and len(self.get_val_dataloaders()) > 1:
args.append(dataloader_idx)
# handle DP, DDP forward
if self.use_ddp or self.use_dp:
output = model(*args)
return output
# single GPU
if self.single_gpu:
# for single GPU put inputs on gpu manually
root_gpu = 0
if isinstance(self.data_parallel_device_ids, list):
root_gpu = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(batch, root_gpu)
args[0] = batch
# CPU
if test:
output = model.test_step(*args)
else:
output = model.validation_step(*args)
return output
def train(self):
model = self.get_model()
# run all epochs
for epoch in range(self.current_epoch, 1000000):
# set seed for distributed sampler (enables shuffling for each epoch)
if self.use_ddp and hasattr(self.get_train_dataloader().sampler, 'set_epoch'):
self.get_train_dataloader().sampler.set_epoch(epoch)
# get model
model = self.get_model()
# update training progress in trainer and model
model.current_epoch = epoch
self.current_epoch = epoch
total_val_batches = 0
if not self.disable_validation:
# val can be checked multiple times in epoch
is_val_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0
val_checks_per_epoch = self.num_training_batches // self.val_check_batch
val_checks_per_epoch = val_checks_per_epoch if is_val_epoch else 0
total_val_batches = self.num_val_batches * val_checks_per_epoch
# total batches includes multiple val checks
self.total_batches = self.num_training_batches + total_val_batches
self.batch_loss_value = 0 # accumulated grads
if self.is_iterable_train_dataloader:
# for iterable train loader, the progress bar never ends
num_iterations = None
else:
num_iterations = self.total_batches
# reset progress bar
# .reset() doesn't work on disabled progress bar so we should check
desc = f'Epoch {epoch + 1}' if not self.is_iterable_train_dataloader else ''
self.main_progress_bar.set_description(desc)
# changing gradient according accumulation_scheduler
self.accumulation_scheduler.on_epoch_begin(epoch, self)
# -----------------
# RUN TNG EPOCH
# -----------------
self.run_training_epoch()
# update LR schedulers
if self.lr_schedulers is not None:
for lr_scheduler in self.lr_schedulers:
lr_scheduler.step(epoch=self.current_epoch)
self.main_progress_bar.close()
model.on_train_end()
if self.logger is not None:
self.logger.finalize("success")
def run_training_epoch(self):
# before epoch hook
if self.is_function_implemented('on_epoch_start'):
model = self.get_model()
model.on_epoch_start()
# run epoch
for batch_idx, batch in enumerate(self.get_train_dataloader()):
# stop epoch if we limited the number of training batches
if batch_idx >= self.num_training_batches:
break
self.batch_idx = batch_idx
model = self.get_model()
model.global_step = self.global_step
# ---------------
# RUN TRAIN STEP
# ---------------
output = self.run_training_batch(batch, batch_idx)
batch_result, grad_norm_dic, batch_step_metrics = output
# when returning -1 from train_step, we end epoch early
early_stop_epoch = batch_result == -1
# ---------------
# RUN VAL STEP
# ---------------
should_check_val = (
not self.disable_validation and self.global_step % self.val_check_batch == 0 and not self.fisrt_epoch)
self.fisrt_epoch = False
if should_check_val:
self.run_evaluation(test=self.testing)
# when logs should be saved
should_save_log = (batch_idx + 1) % self.log_save_interval == 0 or early_stop_epoch
if should_save_log:
if self.proc_rank == 0 and self.logger is not None:
self.logger.save()
# when metrics should be logged
should_log_metrics = batch_idx % self.row_log_interval == 0 or early_stop_epoch
if should_log_metrics:
# logs user requested information to logger
self.log_metrics(batch_step_metrics, grad_norm_dic)
self.global_step += 1
self.total_batch_idx += 1
# end epoch early
# stop when the flag is changed or we've gone past the amount
# requested in the batches
if early_stop_epoch:
break
if self.global_step > self.max_updates:
print("| Training end..")
exit()
# epoch end hook
if self.is_function_implemented('on_epoch_end'):
model = self.get_model()
model.on_epoch_end()
def run_training_batch(self, batch, batch_idx):
# track grad norms
grad_norm_dic = {}
# track all metrics for callbacks
all_callback_metrics = []
# track metrics to log
all_log_metrics = []
if batch is None:
return 0, grad_norm_dic, {}
# hook
if self.is_function_implemented('on_batch_start'):
model_ref = self.get_model()
response = model_ref.on_batch_start(batch)
if response == -1:
return -1, grad_norm_dic, {}
splits = [batch]
self.hiddens = None
for split_idx, split_batch in enumerate(splits):
self.split_idx = split_idx
# call training_step once per optimizer
for opt_idx, optimizer in enumerate(self.optimizers):
if optimizer is None:
continue
# make sure only the gradients of the current optimizer's paramaters are calculated
# in the training step to prevent dangling gradients in multiple-optimizer setup.
if len(self.optimizers) > 1:
for param in self.get_model().parameters():
param.requires_grad = False
for group in optimizer.param_groups:
for param in group['params']:
param.requires_grad = True
# wrap the forward step in a closure so second order methods work
def optimizer_closure():
# forward pass
output = self.training_forward(
split_batch, batch_idx, opt_idx, self.hiddens)
closure_loss = output[0]
progress_bar_metrics = output[1]
log_metrics = output[2]
callback_metrics = output[3]
self.hiddens = output[4]
if closure_loss is None:
return None
# accumulate loss
# (if accumulate_grad_batches = 1 no effect)
closure_loss = closure_loss / self.accumulate_grad_batches
# backward pass
model_ref = self.get_model()
if closure_loss.requires_grad:
model_ref.backward(closure_loss, optimizer)
# track metrics for callbacks
all_callback_metrics.append(callback_metrics)
# track progress bar metrics
self.add_tqdm_metrics(progress_bar_metrics)
all_log_metrics.append(log_metrics)
# insert after step hook
if self.is_function_implemented('on_after_backward'):
model_ref = self.get_model()
model_ref.on_after_backward()
return closure_loss
# calculate loss
loss = optimizer_closure()
if loss is None:
continue
# nan grads
if self.print_nan_grads:
self.print_nan_gradients()
# track total loss for logging (avoid mem leaks)
self.batch_loss_value += loss.item()
# gradient update with accumulated gradients
if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
# track gradient norms when requested
if batch_idx % self.row_log_interval == 0:
if self.track_grad_norm > 0:
model = self.get_model()
grad_norm_dic = model.grad_norm(
self.track_grad_norm)
# clip gradients
self.clip_gradients()
# calls .step(), .zero_grad()
# override function to modify this behavior
model = self.get_model()
model.optimizer_step(self.current_epoch, batch_idx, optimizer, opt_idx)
# calculate running loss for display
self.running_loss.append(self.batch_loss_value)
self.batch_loss_value = 0
self.avg_loss = np.mean(self.running_loss[-100:])
# activate batch end hook
if self.is_function_implemented('on_batch_end'):
model = self.get_model()
model.on_batch_end()
# update progress bar
self.main_progress_bar.update(1)
self.main_progress_bar.set_postfix(**self.training_tqdm_dict)
# collapse all metrics into one dict
all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()}
# track all metrics for callbacks
self.callback_metrics.update({k: v for d in all_callback_metrics for k, v in d.items()})
return 0, grad_norm_dic, all_log_metrics
def training_forward(self, batch, batch_idx, opt_idx, hiddens):
"""
Handle forward for each training case (distributed, single gpu, etc...)
:param batch:
:param batch_idx:
:return:
"""
# ---------------
# FORWARD
# ---------------
# enable not needing to add opt_idx to training_step
args = [batch, batch_idx, opt_idx]
# distributed forward
if self.use_ddp or self.use_dp:
output = self.model(*args)
# single GPU forward
elif self.single_gpu:
gpu_id = 0
if isinstance(self.data_parallel_device_ids, list):
gpu_id = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(copy.copy(batch), gpu_id)
args[0] = batch
output = self.model.training_step(*args)
# CPU forward
else:
output = self.model.training_step(*args)
# allow any mode to define training_end
model_ref = self.get_model()
output_ = model_ref.training_end(output)
if output_ is not None:
output = output_
# format and reduce outputs accordingly
output = self.process_output(output, train=True)
return output
# ---------------
# Utils
# ---------------
def is_function_implemented(self, f_name):
model = self.get_model()
f_op = getattr(model, f_name, None)
return callable(f_op)
def _percent_range_check(self, name):
value = getattr(self, name)
msg = f"`{name}` must lie in the range [0.0, 1.0], but got {value:.3f}."
if name == "val_check_interval":
msg += " If you want to disable validation set `val_percent_check` to 0.0 instead."
if not 0. <= value <= 1.:
raise ValueError(msg)