Spaces:
Runtime error
Runtime error
import torch | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer | |
# Load your data | |
dataset = load_dataset("json", data_files={"train": "qa_data.jsonl"}) | |
# Choose a model (GPT-2 small is easy to start) | |
model_name = "gpt2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Add pad token if missing (GPT-2 doesn't have one by default) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Tokenize | |
def preprocess(example): | |
prompt = example["prompt"] | |
response = example["response"] | |
text = prompt + " " + response | |
tokens = tokenizer( | |
text, | |
truncation=True, | |
padding="max_length", | |
max_length=128, | |
) | |
tokens["labels"] = tokens["input_ids"].copy() | |
return tokens | |
tokenized = dataset["train"].map(preprocess) | |
# Training arguments | |
args = TrainingArguments( | |
output_dir="gpt2-finetuned-qa", | |
per_device_train_batch_size=2, | |
num_train_epochs=5, | |
logging_steps=10, | |
save_steps=50, | |
fp16=True if torch.cuda.is_available() else False, | |
report_to="none", | |
) | |
# Trainer | |
trainer = Trainer( | |
model=model, | |
args=args, | |
train_dataset=tokenized, | |
) | |
trainer.train() | |
model.save_pretrained("gpt2-finetuned-qa") | |
tokenizer.save_pretrained("gpt2-finetuned-qa") |