Spaces:
Sleeping
Sleeping
Silence1412
commited on
Commit
·
1ac37c2
1
Parent(s):
fa0f821
Create Chat_with_pdf_LLM.py
Browse files- Chat_with_pdf_LLM.py +60 -0
Chat_with_pdf_LLM.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.chains.question_answering import load_qa_chain
|
7 |
+
from langchain.llms import OpenAI
|
8 |
+
from langchain.callbacks import get_openai_callback
|
9 |
+
import os
|
10 |
+
from streamlit_chat import message
|
11 |
+
|
12 |
+
def LLM_pdf(model = 'google/flan-t5-large'):
|
13 |
+
# st.header("Ask your PDF 💬")
|
14 |
+
|
15 |
+
# upload file
|
16 |
+
pdf = st.file_uploader("Upload your PDF", type="pdf")
|
17 |
+
|
18 |
+
# extract the text
|
19 |
+
if pdf is not None:
|
20 |
+
pdf_reader = PdfReader(pdf)
|
21 |
+
text = ""
|
22 |
+
for page in pdf_reader.pages:
|
23 |
+
text += page.extract_text()
|
24 |
+
|
25 |
+
# split into chunks
|
26 |
+
text_splitter = CharacterTextSplitter(
|
27 |
+
separator="\n",
|
28 |
+
chunk_size=1000,
|
29 |
+
chunk_overlap=200,
|
30 |
+
length_function=len
|
31 |
+
)
|
32 |
+
chunks = text_splitter.split_text(text)
|
33 |
+
|
34 |
+
# create embeddings
|
35 |
+
embeddings = HuggingFaceEmbeddings()
|
36 |
+
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
37 |
+
|
38 |
+
if 'generated' not in st.session_state:
|
39 |
+
st.session_state['generated'] = []
|
40 |
+
if 'past' not in st.session_state:
|
41 |
+
st.session_state['past'] = []
|
42 |
+
|
43 |
+
# show user input
|
44 |
+
user_question = st.text_input("Ask a question about your PDF:")
|
45 |
+
if user_question:
|
46 |
+
docs = knowledge_base.similarity_search(user_question)
|
47 |
+
|
48 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":5,
|
49 |
+
"max_length":64})
|
50 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
51 |
+
response = chain.run(input_documents=docs,question=user_question
|
52 |
+
|
53 |
+
#st.write(response)
|
54 |
+
st.session_state.past.append(user_question)
|
55 |
+
st.session_state.generated.append(response)
|
56 |
+
|
57 |
+
if st.session_state['generated']:
|
58 |
+
for i in range(len(st.session_state['generated'])-1, -1, -1):
|
59 |
+
message(st.session_state["generated"][i], key=str(i))
|
60 |
+
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
|