Spaces:
Build error
Build error
Upload 6 files
Browse files- MLMbanner.py +144 -0
- app.py +26 -0
- config.py +15 -0
- networks.py +79 -0
- requirements.txt +6 -0
- utils.py +90 -0
MLMbanner.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
def get_html():
|
4 |
+
html_string = """
|
5 |
+
<div id="banner">
|
6 |
+
<div id="particles-js"></div>
|
7 |
+
<h1>Multimodal Chatbot</h1>
|
8 |
+
<p>A chatbot that accepts text, audio, and images.</p>
|
9 |
+
<div class="icons">
|
10 |
+
<div class="icon" id="text-icon">💬</div> <!-- Text Bubble Emoji -->
|
11 |
+
<div class="icon" id="audio-icon">🎧</div> <!-- Headphone Emoji -->
|
12 |
+
<div class="icon" id="image-icon">📷</div> <!-- Camera Emoji -->
|
13 |
+
</div>
|
14 |
+
</div>
|
15 |
+
|
16 |
+
<style>
|
17 |
+
#banner {
|
18 |
+
background: linear-gradient(270deg, #6c5ce7, #a29bfe, #fd79a8);
|
19 |
+
background-size: 600% 600%;
|
20 |
+
color: white;
|
21 |
+
text-align: center;
|
22 |
+
padding: 30px;
|
23 |
+
border-radius: 15px;
|
24 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
25 |
+
position: relative;
|
26 |
+
overflow: hidden;
|
27 |
+
animation: AnimatedGradient 15s ease infinite;
|
28 |
+
}
|
29 |
+
|
30 |
+
#particles-js {
|
31 |
+
position: absolute;
|
32 |
+
width: 100%;
|
33 |
+
height: 100%;
|
34 |
+
top: 0;
|
35 |
+
left: 0;
|
36 |
+
z-index: 1;
|
37 |
+
}
|
38 |
+
|
39 |
+
#banner > * {
|
40 |
+
position: relative;
|
41 |
+
z-index: 2;
|
42 |
+
}
|
43 |
+
|
44 |
+
#banner h1 {
|
45 |
+
font-size: 2.8em;
|
46 |
+
margin-bottom: 10px;
|
47 |
+
animation: fadeInDown 1.5s ease-in-out;
|
48 |
+
}
|
49 |
+
|
50 |
+
#banner p {
|
51 |
+
font-size: 1.3em;
|
52 |
+
animation: fadeInUp 1.5s ease-in-out;
|
53 |
+
}
|
54 |
+
|
55 |
+
.icons {
|
56 |
+
display: flex;
|
57 |
+
justify-content: center;
|
58 |
+
margin-top: 20px;
|
59 |
+
}
|
60 |
+
|
61 |
+
.icon {
|
62 |
+
font-size: 2em;
|
63 |
+
margin: 0 10px;
|
64 |
+
animation: bounce 2s infinite;
|
65 |
+
transition: transform 0.2s;
|
66 |
+
}
|
67 |
+
|
68 |
+
.icon:hover {
|
69 |
+
transform: scale(1.1);
|
70 |
+
}
|
71 |
+
|
72 |
+
@keyframes fadeInDown {
|
73 |
+
from { opacity: 0; transform: translateY(-20px); }
|
74 |
+
to { opacity: 1; transform: translateY(0); }
|
75 |
+
}
|
76 |
+
|
77 |
+
@keyframes fadeInUp {
|
78 |
+
from { opacity: 0; transform: translateY(20px); }
|
79 |
+
to { opacity: 1; transform: translateY(0); }
|
80 |
+
}
|
81 |
+
|
82 |
+
@keyframes bounce {
|
83 |
+
0%, 100% { transform: translateY(0); }
|
84 |
+
50% { transform: translateY(-10px); }
|
85 |
+
}
|
86 |
+
|
87 |
+
@keyframes AnimatedGradient {
|
88 |
+
0%{background-position:0% 50%}
|
89 |
+
50%{background-position:100% 50%}
|
90 |
+
100%{background-position:0% 50%}
|
91 |
+
}
|
92 |
+
</style>
|
93 |
+
|
94 |
+
<script src="https://cdn.jsdelivr.net/particles.js/2.0.0/particles.min.js"></script>
|
95 |
+
<script>
|
96 |
+
document.addEventListener("DOMContentLoaded", function() {
|
97 |
+
particlesJS("particles-js", {
|
98 |
+
"particles": {
|
99 |
+
"number": {
|
100 |
+
"value": 80,
|
101 |
+
"density": {
|
102 |
+
"enable": true,
|
103 |
+
"value_area": 800
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"color": {
|
107 |
+
"value": "#ffffff"
|
108 |
+
},
|
109 |
+
"shape": {
|
110 |
+
"type": "circle",
|
111 |
+
"stroke": {
|
112 |
+
"width": 0,
|
113 |
+
"color": "#000000"
|
114 |
+
},
|
115 |
+
"polygon": {
|
116 |
+
"nb_sides": 5
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"opacity": {
|
120 |
+
"value": 0.5,
|
121 |
+
"random": false,
|
122 |
+
"anim": {
|
123 |
+
"enable": false,
|
124 |
+
"speed": 1,
|
125 |
+
"opacity_min": 0.1,
|
126 |
+
"sync": false
|
127 |
+
}
|
128 |
+
},
|
129 |
+
"size": {
|
130 |
+
"value": 3,
|
131 |
+
"random": true,
|
132 |
+
"anim": {
|
133 |
+
"enable": false,
|
134 |
+
"speed": 40,
|
135 |
+
"size_min": 0.1,
|
136 |
+
"sync": false
|
137 |
+
}
|
138 |
+
},
|
139 |
+
"line_linked": {
|
140 |
+
"enable
|
141 |
+
|
142 |
+
"""
|
143 |
+
|
144 |
+
return(html_string)
|
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from MLMbanner import get_html
|
3 |
+
from utils import chatbot_response
|
4 |
+
|
5 |
+
|
6 |
+
with gr.Blocks() as demo:
|
7 |
+
gr.HTML(value=get_html, show_label=True)
|
8 |
+
|
9 |
+
with gr.Row():
|
10 |
+
text_input = gr.Textbox(label="Enter text", lines=10)
|
11 |
+
image_input = gr.Image(label="Upload image", type="pil")
|
12 |
+
audio_input = gr.Audio(label="Record or upload audio",
|
13 |
+
type="filepath",
|
14 |
+
sources=['microphone', 'upload'])
|
15 |
+
|
16 |
+
submit_button = gr.Button("Submit")
|
17 |
+
|
18 |
+
output = gr.Textbox(label="Chatbot Response", lines=10)
|
19 |
+
|
20 |
+
submit_button.click(
|
21 |
+
fn=chatbot_response,
|
22 |
+
inputs=[text_input, image_input, audio_input],
|
23 |
+
outputs=output
|
24 |
+
)
|
25 |
+
|
26 |
+
demo.launch()
|
config.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoProcessor, AutoTokenizer
|
3 |
+
|
4 |
+
class Config:
|
5 |
+
|
6 |
+
EOS_TOKEN_ID = 50256
|
7 |
+
QUESTION_ANSWER_SEPARATOR_ID = 50295 # Special token ID for question-answer separation
|
8 |
+
IMAGE_SEPARATOR_TOKENS = [685, 36259, 14041, 60, 220]
|
9 |
+
|
10 |
+
phi_model_name = "microsoft/phi-2"
|
11 |
+
model_name = "openai/clip-vit-base-patch32"
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
|
networks.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import peft
|
2 |
+
import torch
|
3 |
+
import whisperx
|
4 |
+
import torch.nn as nn
|
5 |
+
from config import Config
|
6 |
+
from transformers import CLIPVisionModel, AutoModelForCausalLM
|
7 |
+
|
8 |
+
|
9 |
+
phi_model_name, model_name, device = Config.phi_model_name, Config.model_name, Config.device
|
10 |
+
|
11 |
+
text_model = AutoModelForCausalLM.from_pretrained(phi_model_name,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
#device_map="cuda",
|
14 |
+
low_cpu_mem_usage=True,
|
15 |
+
return_dict=True,
|
16 |
+
trust_remote_code=True)
|
17 |
+
|
18 |
+
peft_model = peft.PeftModel.from_pretrained(text_model, 'models/29000')
|
19 |
+
projection = load_projection_model("models/MModalGPT-FINETUNE-step=29000-loss=3.45.ckpt", 768, 2560)
|
20 |
+
|
21 |
+
clip_model = CLIPVisionModel.from_pretrained(model_name)
|
22 |
+
audio_model = whisperx.load_model("small", device.type, compute_type="float16")
|
23 |
+
|
24 |
+
|
25 |
+
projection = projection.to(device)
|
26 |
+
peft_model = peft_model.to(device)
|
27 |
+
clip_model = clip_model.to(device)
|
28 |
+
|
29 |
+
|
30 |
+
def load_projection_model(path, clip_embed, phi_embed):
|
31 |
+
"""Loads a Projections model instance from a checkpoint and returns it with weights loaded.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
path (str): Path to the checkpoint file.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
torch.nn.Module: The loaded Projections model instance.
|
38 |
+
"""
|
39 |
+
|
40 |
+
state_dict = torch.load(path)['state_dict']
|
41 |
+
new_state_dict = {k.replace('projection.', ''): v for k, v in state_dict.items()}
|
42 |
+
|
43 |
+
model = Projections(clip_embed, phi_embed)
|
44 |
+
model.load_state_dict(new_state_dict)
|
45 |
+
|
46 |
+
return model
|
47 |
+
|
48 |
+
|
49 |
+
class Projections(nn.Module):
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
clip_embed,
|
53 |
+
phi_embed,
|
54 |
+
num_projection_layers=6,
|
55 |
+
):
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
self.norm = nn.LayerNorm(phi_embed)
|
59 |
+
self.output = nn.Linear(clip_embed, phi_embed)
|
60 |
+
self.projection_layers = nn.ModuleList(
|
61 |
+
[
|
62 |
+
nn.Sequential(
|
63 |
+
nn.Linear(phi_embed, phi_embed),
|
64 |
+
nn.GELU(),
|
65 |
+
nn.Linear(phi_embed, phi_embed),
|
66 |
+
)
|
67 |
+
for _ in range(num_projection_layers)
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.output(x)
|
73 |
+
self.norm(x)
|
74 |
+
for layer in self.projection_layers:
|
75 |
+
residual = x
|
76 |
+
x = layer(x) + residual
|
77 |
+
|
78 |
+
return x
|
79 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
pandas
|
3 |
+
pillow
|
4 |
+
git+https://github.com/huggingface/transformers
|
5 |
+
git+https://github.com/m-bain/whisperx.git
|
6 |
+
git+https://github.com/huggingface/peft.git
|
utils.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from config import Config
|
3 |
+
from networks import peft_model
|
4 |
+
|
5 |
+
|
6 |
+
tokenizer = Config.tokenizer
|
7 |
+
tokenizer.pad_token = tokenizer.eos_token
|
8 |
+
tokenizer.add_tokens('<question-answer>')
|
9 |
+
|
10 |
+
|
11 |
+
def prepare_inputs(peft_model, audio_model, clip_model, projection, text_input=None, image_input=None, audio_input=None):
|
12 |
+
|
13 |
+
text_audio, text_embed, image_embed = None, None, None
|
14 |
+
|
15 |
+
if audio_input:
|
16 |
+
audio_transcribed = audio_model.transcribe(audio_input)
|
17 |
+
processed_audio = ''
|
18 |
+
|
19 |
+
for audio_segment in audio_transcribed['segments']:
|
20 |
+
processed_audio += audio_segment['text']
|
21 |
+
|
22 |
+
processed_audio = processed_audio.strip()
|
23 |
+
|
24 |
+
if image_input != None:
|
25 |
+
image_processed = Config.processor(images=image_input, return_tensors="pt")
|
26 |
+
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = clip_model(**image_processed)
|
29 |
+
last_hidden_state = outputs.last_hidden_state[:, 1:, :]
|
30 |
+
image_embed = projection(last_hidden_state.to(Config.device)).to(torch.float16)
|
31 |
+
|
32 |
+
if audio_input != None and text_input != None:
|
33 |
+
text_audio = f"{text_input} {processed_audio}"
|
34 |
+
elif audio_input and text_input == None:
|
35 |
+
text_audio = processed_audio
|
36 |
+
elif audio_input == None and text_input:
|
37 |
+
text_audio = text_input
|
38 |
+
|
39 |
+
if text_audio:
|
40 |
+
tokenized_text_audio = tokenizer.encode(text_audio)
|
41 |
+
tokenized_text_audio = Config.IMAGE_SEPARATOR_TOKENS + tokenized_text_audio + [Config.QUESTION_ANSWER_SEPARATOR_ID]
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
tokenized_text_audio = torch.tensor(tokenized_text_audio)
|
45 |
+
text_embed = peft_model.model.model.embed_tokens(tokenized_text_audio.to(Config.device)).unsqueeze(0)
|
46 |
+
|
47 |
+
|
48 |
+
if text_audio != None and image_input != None:
|
49 |
+
combined_embed = torch.cat([image_embed, text_embed], dim=1)
|
50 |
+
elif text_audio and image_input == None:
|
51 |
+
combined_embed = text_embed
|
52 |
+
elif text_audio == None and image_input:
|
53 |
+
combined_embed = image_embed
|
54 |
+
|
55 |
+
return(combined_embed)
|
56 |
+
|
57 |
+
|
58 |
+
def chatbot_response(text_input, image_input, audio_input):
|
59 |
+
|
60 |
+
if text_input == '':
|
61 |
+
text_input = None
|
62 |
+
|
63 |
+
if text_input == None and image_input == None and audio_input == None:
|
64 |
+
return "Please enter text, upload an image, or record audio."
|
65 |
+
|
66 |
+
combined_embeds = prepare_inputs(text_input, image_input, audio_input)
|
67 |
+
generated_tokens = generate_tokens(combined_embeds, max_tokens=60)
|
68 |
+
return(tokenizer.decode(generated_tokens))
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
def generate_tokens(combined_embeds, max_tokens=100):
|
73 |
+
pred_tokens = []
|
74 |
+
|
75 |
+
combined_embed = combined_embeds
|
76 |
+
|
77 |
+
for _ in range(max_tokens):
|
78 |
+
logits = peft_model(inputs_embeds=combined_embed).logits[:, -1, :]
|
79 |
+
next_token_id = logits.argmax(dim=-1)
|
80 |
+
|
81 |
+
if next_token_id.item() == 50256:
|
82 |
+
break
|
83 |
+
|
84 |
+
pred_tokens.append(next_token_id.item())
|
85 |
+
next_token_embed = peft_model.model.model.embed_tokens(next_token_id.unsqueeze(0))
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
combined_embed = torch.cat((combined_embed, next_token_embed), dim=1)
|
89 |
+
|
90 |
+
return(pred_tokens)
|