Spaces:
Paused
Paused
aurelien
commited on
Commit
·
845c5fd
1
Parent(s):
f63cd93
Edit script for GPU
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ import numpy as np
|
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from transformers import pipeline
|
| 9 |
import torch
|
| 10 |
-
from validate_comment_sentiment_tags import analyze_comment # ton code ci-dessus, tu peux aussi le copier ici
|
| 11 |
|
| 12 |
app = FastAPI(title="Comment Validator API")
|
| 13 |
|
|
@@ -15,14 +14,89 @@ app = FastAPI(title="Comment Validator API")
|
|
| 15 |
# 🔹 Chargement des modèles
|
| 16 |
# =====================================
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
print(f"🧠 Using device: {device}")
|
| 20 |
|
|
|
|
| 21 |
text_model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2", device=device)
|
|
|
|
| 22 |
clf = joblib.load("models/classifier.joblib")
|
|
|
|
| 23 |
encoder = joblib.load("models/encoder.joblib")
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# =====================================
|
| 28 |
# 🔸 Modèles de requête/réponse
|
|
|
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from transformers import pipeline
|
| 9 |
import torch
|
|
|
|
| 10 |
|
| 11 |
app = FastAPI(title="Comment Validator API")
|
| 12 |
|
|
|
|
| 14 |
# 🔹 Chargement des modèles
|
| 15 |
# =====================================
|
| 16 |
|
| 17 |
+
if torch.cuda.is_available():
|
| 18 |
+
device = "cuda"
|
| 19 |
+
elif torch.backends.mps.is_available():
|
| 20 |
+
device = "mps" # pour ton Mac local
|
| 21 |
+
else:
|
| 22 |
+
device = "cpu"
|
| 23 |
print(f"🧠 Using device: {device}")
|
| 24 |
|
| 25 |
+
print("Loading model embedding")
|
| 26 |
text_model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2", device=device)
|
| 27 |
+
print("Loading model classifier")
|
| 28 |
clf = joblib.load("models/classifier.joblib")
|
| 29 |
+
print("Loading model encoder")
|
| 30 |
encoder = joblib.load("models/encoder.joblib")
|
| 31 |
+
print("Loading model sentiment-analysis")
|
| 32 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment", device=device)
|
| 33 |
+
print("Loading model toxicity")
|
| 34 |
+
toxicity_analyzer = pipeline("text-classification", model="unitary/toxic-bert", return_all_scores=True, device=device)
|
| 35 |
+
|
| 36 |
+
def analyze_comment(comment: str, category: str, country: str) -> dict:
|
| 37 |
+
reasons = []
|
| 38 |
+
|
| 39 |
+
# --- Analyse du sentiment ---
|
| 40 |
+
try:
|
| 41 |
+
sentiment = sentiment_analyzer(comment[:512])[0]
|
| 42 |
+
label = sentiment["label"]
|
| 43 |
+
score = sentiment["score"]
|
| 44 |
+
except Exception:
|
| 45 |
+
label, score = "unknown", 0.0
|
| 46 |
+
|
| 47 |
+
if "1" in label or "2" in label:
|
| 48 |
+
sentiment_score = -1
|
| 49 |
+
reasons.append("Le ton semble négatif ou insatisfait.")
|
| 50 |
+
elif "4" in label or "5" in label:
|
| 51 |
+
sentiment_score = 1
|
| 52 |
+
else:
|
| 53 |
+
sentiment_score = 0
|
| 54 |
+
|
| 55 |
+
# --- Encodage du texte ---
|
| 56 |
+
X_text = text_model.encode([comment])
|
| 57 |
+
|
| 58 |
+
# --- Encodage catégorie/pays ---
|
| 59 |
+
df_cat = pd.DataFrame([[category, country]], columns=["category", "country"])
|
| 60 |
+
try:
|
| 61 |
+
X_cat = encoder.transform(df_cat)
|
| 62 |
+
except ValueError:
|
| 63 |
+
reasons.append(f"Catégorie ou pays inconnus : {category}, {country}")
|
| 64 |
+
n_features = sum(len(cats) for cats in encoder.categories_)
|
| 65 |
+
X_cat = np.zeros((1, n_features))
|
| 66 |
+
|
| 67 |
+
# --- Concaténation ---
|
| 68 |
+
X = np.concatenate([X_text, X_cat], axis=1)
|
| 69 |
+
|
| 70 |
+
# --- Prédiction validité ---
|
| 71 |
+
proba = clf.predict_proba(X)[0][1]
|
| 72 |
+
prediction = proba >= 0.5
|
| 73 |
+
|
| 74 |
+
if len(comment.split()) < 3:
|
| 75 |
+
reasons.append("Le commentaire est trop court.")
|
| 76 |
+
if sentiment_score < 0:
|
| 77 |
+
reasons.append("Le ton global est négatif.")
|
| 78 |
+
if proba < 0.4:
|
| 79 |
+
reasons.append("Le modèle estime une faible probabilité de validité.")
|
| 80 |
+
|
| 81 |
+
# --- Analyse toxicité ---
|
| 82 |
+
try:
|
| 83 |
+
tox_scores = toxicity_analyzer(comment[:512])[0] # tronquer pour sécurité
|
| 84 |
+
tags = {f"tag_{item['label']}": round(item['score'], 3) for item in tox_scores}
|
| 85 |
+
except Exception:
|
| 86 |
+
tags = {f"tag_{label}": 0.0 for label in ["toxicity","severe_toxicity","obscene","identity_attack","insult","threat"]}
|
| 87 |
+
|
| 88 |
+
# --- Résultat final ---
|
| 89 |
+
result = {
|
| 90 |
+
"is_valid": bool(prediction),
|
| 91 |
+
"confidence": round(float(proba), 3),
|
| 92 |
+
"sentiment": label,
|
| 93 |
+
"sentiment_score": round(float(score), 3),
|
| 94 |
+
"reasons": "; ".join(reasons) if reasons else "Aucune anomalie détectée."
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
result.update(tags)
|
| 98 |
+
return result
|
| 99 |
+
|
| 100 |
|
| 101 |
# =====================================
|
| 102 |
# 🔸 Modèles de requête/réponse
|