Spaces:
Runtime error
Runtime error
pipka
Browse files
app.py
CHANGED
|
@@ -1,30 +1,66 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
model_name = "
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 11 |
-
bnb_4bit_use_double_quant=True,
|
| 12 |
-
llm_int8_enable_fp32_cpu_offload=True
|
| 13 |
-
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
]
|
| 22 |
-
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
| 23 |
-
outputs = model.generate(input_tensor.to(model.device))
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
import evaluate
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from datasets import Dataset
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from transformers import (AutoTokenizer, AutoModelForSequenceClassification,
|
| 8 |
+
TrainingArguments, Trainer)
|
| 9 |
|
| 10 |
+
model_name = "DeepPavlov/rubert-base-cased"
|
| 11 |
|
| 12 |
+
# Login using e.g. `huggingface-cli login` to access this dataset
|
| 13 |
+
splits = {'train': 'data/train-00000-of-00001.parquet', 'test': 'data/test-00000-of-00001.parquet'}
|
| 14 |
+
df = pd.read_parquet("hf://datasets/mteb/RuSciBenchOECDClassification/" + splits["train"])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Конвертируем датафрейм в Dataset
|
| 17 |
+
train, test = train_test_split(df, test_size=0.2)
|
| 18 |
+
train = Dataset.from_pandas(train)
|
| 19 |
+
test = Dataset.from_pandas(test)
|
| 20 |
|
| 21 |
+
# Выполняем предобработку текста
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def tokenize_function(examples):
|
| 25 |
+
return tokenizer(examples['text'], padding='max_length', truncation=True)
|
| 26 |
|
| 27 |
+
tokenized_train = train.map(tokenize_function)
|
| 28 |
+
tokenized_test = test.map(tokenize_function)
|
| 29 |
|
| 30 |
+
# Загружаем предобученную модель
|
| 31 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 32 |
+
model_name,
|
| 33 |
+
num_labels=28)
|
| 34 |
+
|
| 35 |
+
# Задаем параметры обучения
|
| 36 |
+
training_args = TrainingArguments(
|
| 37 |
+
output_dir = 'test_trainer_log',
|
| 38 |
+
evaluation_strategy = 'epoch',
|
| 39 |
+
per_device_train_batch_size = 6,
|
| 40 |
+
per_device_eval_batch_size = 6,
|
| 41 |
+
num_train_epochs = 5,
|
| 42 |
+
report_to='none')
|
| 43 |
+
|
| 44 |
+
# Определяем как считать метрику
|
| 45 |
+
metric = evaluate.load('f1')
|
| 46 |
+
def compute_metrics(eval_pred):
|
| 47 |
+
logits, labels = eval_pred
|
| 48 |
+
predictions = np.argmax(logits, axis=-1)
|
| 49 |
+
return metric.compute(predictions=predictions, references=labels)
|
| 50 |
+
|
| 51 |
+
# Выполняем обучение
|
| 52 |
+
trainer = Trainer(
|
| 53 |
+
model = model,
|
| 54 |
+
args = training_args,
|
| 55 |
+
train_dataset = tokenized_train,
|
| 56 |
+
eval_dataset = tokenized_test,
|
| 57 |
+
compute_metrics = compute_metrics)
|
| 58 |
+
|
| 59 |
+
trainer.train()
|
| 60 |
+
|
| 61 |
+
# Сохраняем модель
|
| 62 |
+
save_directory = './pt_save_pretrained'
|
| 63 |
+
#tokenizer.save_pretrained(save_directory)
|
| 64 |
+
model.save_pretrained(save_directory)
|
| 65 |
+
#alternatively save the trainer
|
| 66 |
+
#trainer.save_model('CustomModels/CustomHamSpam')
|