Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| try: | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| except ImportError: | |
| import os | |
| os.system("pip install transformers torch gradio") | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| # Load model + tokenizer | |
| model_name = "premai-io/prem-1B-SQL" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| device_map="auto" # Uses GPU if available on Spaces | |
| ) | |
| def text_to_sql(question, schema=""): | |
| """ | |
| Convert natural language question into SQL query. | |
| Schema can be passed as a string (table + column names). | |
| """ | |
| if schema: | |
| prompt = f"{schema}\nQuestion: {question}\nSQL:" | |
| else: | |
| prompt = f"Question: {question}\nSQL:" | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=256, | |
| temperature=0.2, # Low temp for deterministic SQL | |
| do_sample=False | |
| ) | |
| sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return sql_query | |
| # Define Gradio interface (API-like, minimal UI) | |
| iface = gr.Interface( | |
| fn=text_to_sql, | |
| inputs=[ | |
| gr.Textbox(label="Question"), | |
| gr.Textbox(label="Schema (optional)", placeholder="table: columns, ...") | |
| ], | |
| outputs="text", | |
| title="Text-to-SQL Converter", | |
| description="Convert natural language questions into SQL queries using the premai-io/prem-1B-SQL model." | |
| ) | |
| # Launch (for Spaces: set share=False, HF will handle the endpoint) | |
| iface.launch(share=False, server_name="0.0.0.0", server_port=7860, show_api=True) |