Spaces:
Runtime error
Runtime error
Add FSC code
Browse files- README.md +1 -1
- app.py +17 -78
- audio_fsc.wav +0 -0
- fsc/config.yaml +355 -0
- fsc/valid.acc.ave_5best.pth +3 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: ESPnet2
|
3 |
emoji: π
|
4 |
colorFrom: green
|
5 |
colorTo: green
|
|
|
1 |
---
|
2 |
+
title: ESPnet2 SLU
|
3 |
emoji: π
|
4 |
colorFrom: green
|
5 |
colorTo: green
|
app.py
CHANGED
@@ -10,95 +10,34 @@ from espnet2.bin.asr_inference import Speech2Text
|
|
10 |
# tagen = 'kan-bayashi/ljspeech_vits'
|
11 |
# vocoder_tagen = "none"
|
12 |
|
13 |
-
|
14 |
asr_train_config="slurp/config.yaml",
|
15 |
asr_model_file="slurp/valid.acc.ave_10best.pth",
|
16 |
# Decoding parameters are not included in the model file
|
17 |
nbest=1
|
18 |
)
|
19 |
-
# Confirm the sampling rate is equal to that of the training corpus.
|
20 |
-
# If not, you need to resample the audio data before inputting to speech2text
|
21 |
-
# speech, rate = soundfile.read("audio--1504190171-headset.flac")
|
22 |
-
# nbests = speech2text(speech)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# vocoder_tag=str_or_none(vocoder_tagen),
|
31 |
-
# device="cpu",
|
32 |
-
# # Only for Tacotron 2 & Transformer
|
33 |
-
# threshold=0.5,
|
34 |
-
# # Only for Tacotron 2
|
35 |
-
# minlenratio=0.0,
|
36 |
-
# maxlenratio=10.0,
|
37 |
-
# use_att_constraint=False,
|
38 |
-
# backward_window=1,
|
39 |
-
# forward_window=3,
|
40 |
-
# # Only for FastSpeech & FastSpeech2 & VITS
|
41 |
-
# speed_control_alpha=1.0,
|
42 |
-
# # Only for VITS
|
43 |
-
# noise_scale=0.333,
|
44 |
-
# noise_scale_dur=0.333,
|
45 |
-
# )
|
46 |
-
|
47 |
-
|
48 |
-
# tagjp = 'kan-bayashi/jsut_full_band_vits_prosody'
|
49 |
-
# vocoder_tagjp = 'none'
|
50 |
-
|
51 |
-
# text2speechjp = Text2Speech.from_pretrained(
|
52 |
-
# model_tag=str_or_none(tagjp),
|
53 |
-
# vocoder_tag=str_or_none(vocoder_tagjp),
|
54 |
-
# device="cpu",
|
55 |
-
# # Only for Tacotron 2 & Transformer
|
56 |
-
# threshold=0.5,
|
57 |
-
# # Only for Tacotron 2
|
58 |
-
# minlenratio=0.0,
|
59 |
-
# maxlenratio=10.0,
|
60 |
-
# use_att_constraint=False,
|
61 |
-
# backward_window=1,
|
62 |
-
# forward_window=3,
|
63 |
-
# # Only for FastSpeech & FastSpeech2 & VITS
|
64 |
-
# speed_control_alpha=1.0,
|
65 |
-
# # Only for VITS
|
66 |
-
# noise_scale=0.333,
|
67 |
-
# noise_scale_dur=0.333,
|
68 |
-
# )
|
69 |
-
|
70 |
-
# tagch = 'kan-bayashi/csmsc_full_band_vits'
|
71 |
-
# vocoder_tagch = "none"
|
72 |
-
|
73 |
-
# text2speechch = Text2Speech.from_pretrained(
|
74 |
-
# model_tag=str_or_none(tagch),
|
75 |
-
# vocoder_tag=str_or_none(vocoder_tagch),
|
76 |
-
# device="cpu",
|
77 |
-
# # Only for Tacotron 2 & Transformer
|
78 |
-
# threshold=0.5,
|
79 |
-
# # Only for Tacotron 2
|
80 |
-
# minlenratio=0.0,
|
81 |
-
# maxlenratio=10.0,
|
82 |
-
# use_att_constraint=False,
|
83 |
-
# backward_window=1,
|
84 |
-
# forward_window=3,
|
85 |
-
# # Only for FastSpeech & FastSpeech2 & VITS
|
86 |
-
# speed_control_alpha=1.0,
|
87 |
-
# # Only for VITS
|
88 |
-
# noise_scale=0.333,
|
89 |
-
# noise_scale_dur=0.333,
|
90 |
-
# )
|
91 |
|
92 |
-
def inference(wav,
|
93 |
with torch.no_grad():
|
94 |
-
if
|
95 |
speech, rate = soundfile.read(wav.name)
|
96 |
-
nbests =
|
97 |
text, *_ = nbests[0]
|
98 |
intent=text.split(" ")[0]
|
99 |
scenario=intent.split("_")[0]
|
100 |
action=intent.split("_")[1]
|
101 |
text="{scenario: "+scenario+", action: "+action+"}"
|
|
|
|
|
|
|
|
|
102 |
# if lang == "chinese":
|
103 |
# wav = text2speechch(text)["wav"]
|
104 |
# scipy.io.wavfile.write("out.wav",text2speechch.fs , wav.view(-1).cpu().numpy())
|
@@ -107,15 +46,15 @@ def inference(wav,lang):
|
|
107 |
# scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy())
|
108 |
return text
|
109 |
title = "ESPnet2-SLU"
|
110 |
-
description = "Gradio demo for ESPnet2-SLU: Advancing Spoken Language Understanding through ESPnet. To use it, simply record your audio. Read more at the links below."
|
111 |
article = "<p style='text-align: center'><a href='https://github.com/espnet/espnet' target='_blank'>Github Repo</a></p>"
|
112 |
|
113 |
-
examples=[['audio_slurp.flac',"
|
114 |
|
115 |
# gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english"], type="value", default="english", label="language")
|
116 |
gr.Interface(
|
117 |
inference,
|
118 |
-
[gr.inputs.Audio(label="input audio",source = "microphone", type="file"),gr.inputs.Radio(choices=["
|
119 |
gr.outputs.Textbox(type="str", label="Output"),
|
120 |
title=title,
|
121 |
description=description,
|
|
|
10 |
# tagen = 'kan-bayashi/ljspeech_vits'
|
11 |
# vocoder_tagen = "none"
|
12 |
|
13 |
+
speech2text_slurp = Speech2Text.from_pretrained(
|
14 |
asr_train_config="slurp/config.yaml",
|
15 |
asr_model_file="slurp/valid.acc.ave_10best.pth",
|
16 |
# Decoding parameters are not included in the model file
|
17 |
nbest=1
|
18 |
)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
speech2text_fsc = Speech2Text.from_pretrained(
|
21 |
+
asr_train_config="fsc/config.yaml",
|
22 |
+
asr_model_file="fsc/valid.acc.ave_5best.pth",
|
23 |
+
# Decoding parameters are not included in the model file
|
24 |
+
nbest=1
|
25 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def inference(wav,data):
|
28 |
with torch.no_grad():
|
29 |
+
if data == "english_slurp":
|
30 |
speech, rate = soundfile.read(wav.name)
|
31 |
+
nbests = speech2text_slurp(speech)
|
32 |
text, *_ = nbests[0]
|
33 |
intent=text.split(" ")[0]
|
34 |
scenario=intent.split("_")[0]
|
35 |
action=intent.split("_")[1]
|
36 |
text="{scenario: "+scenario+", action: "+action+"}"
|
37 |
+
elif data == "english_fsc":
|
38 |
+
speech, rate = soundfile.read(wav.name)
|
39 |
+
nbests = speech2text_fsc(speech)
|
40 |
+
text, *_ = nbests[0]
|
41 |
# if lang == "chinese":
|
42 |
# wav = text2speechch(text)["wav"]
|
43 |
# scipy.io.wavfile.write("out.wav",text2speechch.fs , wav.view(-1).cpu().numpy())
|
|
|
46 |
# scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy())
|
47 |
return text
|
48 |
title = "ESPnet2-SLU"
|
49 |
+
description = "Gradio demo for ESPnet2-SLU: Advancing Spoken Language Understanding through ESPnet. To use it, simply record your audio or click one of the examples to load them. Read more at the links below."
|
50 |
article = "<p style='text-align: center'><a href='https://github.com/espnet/espnet' target='_blank'>Github Repo</a></p>"
|
51 |
|
52 |
+
examples=[['audio_slurp.flac',"english_slurp"],['audio_fsc.wav',"english_fsc"]]
|
53 |
|
54 |
# gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english"], type="value", default="english", label="language")
|
55 |
gr.Interface(
|
56 |
inference,
|
57 |
+
[gr.inputs.Audio(label="input audio",source = "microphone", type="file"),gr.inputs.Radio(choices=["english_slurp","english_fsc"], type="value", default="english_slurp", label="Dataset")],
|
58 |
gr.outputs.Textbox(type="str", label="Output"),
|
59 |
title=title,
|
60 |
description=description,
|
audio_fsc.wav
ADDED
Binary file (41 kB). View file
|
|
fsc/config.yaml
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config: conf/tuning/train_asr_hubert_transformer_adam_specaug.yaml
|
2 |
+
print_config: false
|
3 |
+
log_level: INFO
|
4 |
+
dry_run: false
|
5 |
+
iterator_type: sequence
|
6 |
+
output_dir: exp/asr_train_asr_hubert_transformer_adam_specaug_raw_en_word
|
7 |
+
ngpu: 1
|
8 |
+
seed: 0
|
9 |
+
num_workers: 1
|
10 |
+
num_att_plot: 3
|
11 |
+
dist_backend: nccl
|
12 |
+
dist_init_method: env://
|
13 |
+
dist_world_size: null
|
14 |
+
dist_rank: null
|
15 |
+
local_rank: 0
|
16 |
+
dist_master_addr: null
|
17 |
+
dist_master_port: null
|
18 |
+
dist_launcher: null
|
19 |
+
multiprocessing_distributed: false
|
20 |
+
unused_parameters: false
|
21 |
+
sharded_ddp: false
|
22 |
+
cudnn_enabled: true
|
23 |
+
cudnn_benchmark: false
|
24 |
+
cudnn_deterministic: true
|
25 |
+
collect_stats: false
|
26 |
+
write_collected_feats: false
|
27 |
+
max_epoch: 200
|
28 |
+
patience: null
|
29 |
+
val_scheduler_criterion:
|
30 |
+
- valid
|
31 |
+
- loss
|
32 |
+
early_stopping_criterion:
|
33 |
+
- valid
|
34 |
+
- loss
|
35 |
+
- min
|
36 |
+
best_model_criterion:
|
37 |
+
- - train
|
38 |
+
- loss
|
39 |
+
- min
|
40 |
+
- - valid
|
41 |
+
- loss
|
42 |
+
- min
|
43 |
+
- - train
|
44 |
+
- acc
|
45 |
+
- max
|
46 |
+
- - valid
|
47 |
+
- acc
|
48 |
+
- max
|
49 |
+
keep_nbest_models: 5
|
50 |
+
grad_clip: 5.0
|
51 |
+
grad_clip_type: 2.0
|
52 |
+
grad_noise: false
|
53 |
+
accum_grad: 1
|
54 |
+
no_forward_run: false
|
55 |
+
resume: true
|
56 |
+
train_dtype: float32
|
57 |
+
use_amp: false
|
58 |
+
log_interval: null
|
59 |
+
use_tensorboard: true
|
60 |
+
use_wandb: false
|
61 |
+
wandb_project: null
|
62 |
+
wandb_id: null
|
63 |
+
wandb_entity: null
|
64 |
+
wandb_name: null
|
65 |
+
wandb_model_log_interval: -1
|
66 |
+
detect_anomaly: false
|
67 |
+
pretrain_path: null
|
68 |
+
init_param: []
|
69 |
+
ignore_init_mismatch: false
|
70 |
+
freeze_param:
|
71 |
+
- frontend.upstream
|
72 |
+
num_iters_per_epoch: null
|
73 |
+
batch_size: 20
|
74 |
+
valid_batch_size: null
|
75 |
+
batch_bins: 1000000
|
76 |
+
valid_batch_bins: null
|
77 |
+
train_shape_file:
|
78 |
+
- exp/asr_stats_raw_en_word/train/speech_shape
|
79 |
+
- exp/asr_stats_raw_en_word/train/text_shape.word
|
80 |
+
valid_shape_file:
|
81 |
+
- exp/asr_stats_raw_en_word/valid/speech_shape
|
82 |
+
- exp/asr_stats_raw_en_word/valid/text_shape.word
|
83 |
+
batch_type: folded
|
84 |
+
valid_batch_type: null
|
85 |
+
fold_length:
|
86 |
+
- 80000
|
87 |
+
- 150
|
88 |
+
sort_in_batch: descending
|
89 |
+
sort_batch: descending
|
90 |
+
multiple_iterator: false
|
91 |
+
chunk_length: 500
|
92 |
+
chunk_shift_ratio: 0.5
|
93 |
+
num_cache_chunks: 1024
|
94 |
+
train_data_path_and_name_and_type:
|
95 |
+
- - dump/raw/train/wav.scp
|
96 |
+
- speech
|
97 |
+
- sound
|
98 |
+
- - dump/raw/train/text
|
99 |
+
- text
|
100 |
+
- text
|
101 |
+
valid_data_path_and_name_and_type:
|
102 |
+
- - dump/raw/valid/wav.scp
|
103 |
+
- speech
|
104 |
+
- sound
|
105 |
+
- - dump/raw/valid/text
|
106 |
+
- text
|
107 |
+
- text
|
108 |
+
allow_variable_data_keys: false
|
109 |
+
max_cache_size: 0.0
|
110 |
+
max_cache_fd: 32
|
111 |
+
valid_max_cache_size: null
|
112 |
+
optim: adam
|
113 |
+
optim_conf:
|
114 |
+
lr: 0.0002
|
115 |
+
scheduler: warmuplr
|
116 |
+
scheduler_conf:
|
117 |
+
warmup_steps: 25000
|
118 |
+
token_list:
|
119 |
+
- <blank>
|
120 |
+
- <unk>
|
121 |
+
- the
|
122 |
+
- Turn
|
123 |
+
- in
|
124 |
+
- lights
|
125 |
+
- 'on'
|
126 |
+
- up
|
127 |
+
- down
|
128 |
+
- temperature
|
129 |
+
- heat
|
130 |
+
- 'off'
|
131 |
+
- Switch
|
132 |
+
- increase_volume_none
|
133 |
+
- kitchen
|
134 |
+
- language
|
135 |
+
- decrease_volume_none
|
136 |
+
- bedroom
|
137 |
+
- washroom
|
138 |
+
- volume
|
139 |
+
- my
|
140 |
+
- to
|
141 |
+
- bathroom
|
142 |
+
- Decrease
|
143 |
+
- increase_heat_washroom
|
144 |
+
- decrease_heat_washroom
|
145 |
+
- Increase
|
146 |
+
- music
|
147 |
+
- heating
|
148 |
+
- Bring
|
149 |
+
- increase_heat_none
|
150 |
+
- decrease_heat_none
|
151 |
+
- me
|
152 |
+
- change_language_none_none
|
153 |
+
- activate_lights_washroom
|
154 |
+
- Set
|
155 |
+
- Lights
|
156 |
+
- activate_lights_kitchen
|
157 |
+
- I
|
158 |
+
- activate_music_none
|
159 |
+
- too
|
160 |
+
- it
|
161 |
+
- increase_heat_bedroom
|
162 |
+
- decrease_heat_bedroom
|
163 |
+
- sound
|
164 |
+
- increase_heat_kitchen
|
165 |
+
- decrease_heat_kitchen
|
166 |
+
- deactivate_music_none
|
167 |
+
- lamp
|
168 |
+
- Make
|
169 |
+
- deactivate_lights_bedroom
|
170 |
+
- deactivate_lights_kitchen
|
171 |
+
- bring_newspaper_none
|
172 |
+
- newspaper
|
173 |
+
- activate_lights_bedroom
|
174 |
+
- bring_socks_none
|
175 |
+
- socks
|
176 |
+
- bring_shoes_none
|
177 |
+
- shoes
|
178 |
+
- need
|
179 |
+
- Volume
|
180 |
+
- activate_lights_none
|
181 |
+
- deactivate_lights_none
|
182 |
+
- bring_juice_none
|
183 |
+
- juice
|
184 |
+
- deactivate_lights_washroom
|
185 |
+
- change_language_Chinese_none
|
186 |
+
- deactivate_lamp_none
|
187 |
+
- activate_lamp_none
|
188 |
+
- Kitchen
|
189 |
+
- turn
|
190 |
+
- some
|
191 |
+
- Could
|
192 |
+
- you
|
193 |
+
- Bedroom
|
194 |
+
- Go
|
195 |
+
- get
|
196 |
+
- Washroom
|
197 |
+
- Chinese
|
198 |
+
- phone's
|
199 |
+
- change_language_English_none
|
200 |
+
- Get
|
201 |
+
- change_language_Korean_none
|
202 |
+
- OK
|
203 |
+
- now
|
204 |
+
- switch
|
205 |
+
- main
|
206 |
+
- change_language_German_none
|
207 |
+
- practice
|
208 |
+
- Louder
|
209 |
+
- Stop
|
210 |
+
- loud
|
211 |
+
- increase
|
212 |
+
- Play
|
213 |
+
- hear
|
214 |
+
- Change
|
215 |
+
- quiet
|
216 |
+
- Bathroom
|
217 |
+
- Fetch
|
218 |
+
- Korean
|
219 |
+
- English
|
220 |
+
- German
|
221 |
+
- Pause
|
222 |
+
- Lamp
|
223 |
+
- Resume
|
224 |
+
- louder
|
225 |
+
- Heat
|
226 |
+
- audio
|
227 |
+
- Its
|
228 |
+
- loud,
|
229 |
+
- heating?
|
230 |
+
- Far
|
231 |
+
- a
|
232 |
+
- different
|
233 |
+
- please?
|
234 |
+
- decrease
|
235 |
+
- Too
|
236 |
+
- settings
|
237 |
+
- Put
|
238 |
+
- Start
|
239 |
+
- Quieter
|
240 |
+
- please
|
241 |
+
- Thats
|
242 |
+
- softer
|
243 |
+
- max
|
244 |
+
- mute
|
245 |
+
- lower
|
246 |
+
- phone
|
247 |
+
- couldn't
|
248 |
+
- anything,
|
249 |
+
- Reduce
|
250 |
+
- this,
|
251 |
+
- More
|
252 |
+
- That's
|
253 |
+
- Lower
|
254 |
+
- levels
|
255 |
+
- Use
|
256 |
+
- hotter
|
257 |
+
- languages
|
258 |
+
- Allow
|
259 |
+
- can't
|
260 |
+
- that
|
261 |
+
- Less
|
262 |
+
- system
|
263 |
+
- cooler
|
264 |
+
- This
|
265 |
+
- video
|
266 |
+
- is
|
267 |
+
- low,
|
268 |
+
- device
|
269 |
+
- Chinese.
|
270 |
+
- quieter
|
271 |
+
- English.
|
272 |
+
- Language
|
273 |
+
- Open
|
274 |
+
- German.
|
275 |
+
- Korean.
|
276 |
+
- <sos/eos>
|
277 |
+
init: null
|
278 |
+
input_size: null
|
279 |
+
ctc_conf:
|
280 |
+
dropout_rate: 0.0
|
281 |
+
ctc_type: builtin
|
282 |
+
reduce: true
|
283 |
+
ignore_nan_grad: true
|
284 |
+
model_conf:
|
285 |
+
ctc_weight: 0.3
|
286 |
+
lsm_weight: 0.1
|
287 |
+
length_normalized_loss: false
|
288 |
+
extract_feats_in_collect_stats: false
|
289 |
+
use_preprocessor: true
|
290 |
+
token_type: word
|
291 |
+
bpemodel: null
|
292 |
+
non_linguistic_symbols: null
|
293 |
+
cleaner: null
|
294 |
+
g2p: null
|
295 |
+
speech_volume_normalize: null
|
296 |
+
rir_scp: null
|
297 |
+
rir_apply_prob: 1.0
|
298 |
+
noise_scp: null
|
299 |
+
noise_apply_prob: 1.0
|
300 |
+
noise_db_range: '13_15'
|
301 |
+
frontend: s3prl
|
302 |
+
frontend_conf:
|
303 |
+
frontend_conf:
|
304 |
+
upstream: hubert_large_ll60k
|
305 |
+
download_dir: ./hub
|
306 |
+
multilayer_feature: true
|
307 |
+
fs: 16k
|
308 |
+
specaug: specaug
|
309 |
+
specaug_conf:
|
310 |
+
apply_time_warp: true
|
311 |
+
time_warp_window: 5
|
312 |
+
time_warp_mode: bicubic
|
313 |
+
apply_freq_mask: true
|
314 |
+
freq_mask_width_range:
|
315 |
+
- 0
|
316 |
+
- 30
|
317 |
+
num_freq_mask: 2
|
318 |
+
apply_time_mask: true
|
319 |
+
time_mask_width_range:
|
320 |
+
- 0
|
321 |
+
- 40
|
322 |
+
num_time_mask: 2
|
323 |
+
normalize: utterance_mvn
|
324 |
+
normalize_conf: {}
|
325 |
+
preencoder: linear
|
326 |
+
preencoder_conf:
|
327 |
+
input_size: 1024
|
328 |
+
output_size: 80
|
329 |
+
encoder: transformer
|
330 |
+
encoder_conf:
|
331 |
+
output_size: 256
|
332 |
+
attention_heads: 4
|
333 |
+
linear_units: 2048
|
334 |
+
num_blocks: 12
|
335 |
+
dropout_rate: 0.1
|
336 |
+
positional_dropout_rate: 0.1
|
337 |
+
attention_dropout_rate: 0.0
|
338 |
+
input_layer: conv2d
|
339 |
+
normalize_before: true
|
340 |
+
postencoder: null
|
341 |
+
postencoder_conf: {}
|
342 |
+
decoder: transformer
|
343 |
+
decoder_conf:
|
344 |
+
attention_heads: 4
|
345 |
+
linear_units: 2048
|
346 |
+
num_blocks: 6
|
347 |
+
dropout_rate: 0.1
|
348 |
+
positional_dropout_rate: 0.1
|
349 |
+
self_attention_dropout_rate: 0.0
|
350 |
+
src_attention_dropout_rate: 0.0
|
351 |
+
required:
|
352 |
+
- output_dir
|
353 |
+
- token_list
|
354 |
+
version: 0.10.3a2
|
355 |
+
distributed: false
|
fsc/valid.acc.ave_5best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2adc40ef8aaace766e9aa307cc49e78419a516a75fa58b3eabecc9e857fc5a4
|
3 |
+
size 1375946815
|