Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,92 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
if __name__ == "__main__":
|
7 |
|
8 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
9 |
-
iface.launch()
|
10 |
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
from langchain.retrievers import EnsembleRetriever
|
4 |
+
from utils import *
|
5 |
+
import requests
|
6 |
+
from pyvi import ViTokenizer, ViPosTagger
|
7 |
+
import time
|
8 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
9 |
+
import torch
|
10 |
+
|
11 |
+
retriever = load_the_embedding_retrieve(is_ready=True, k=3)
|
12 |
+
bm25_retriever = load_the_bm25_retrieve(k=3)
|
13 |
+
|
14 |
+
ensemble_retriever = EnsembleRetriever(
|
15 |
+
retrievers=[bm25_retriever, retriever], weights=[0.5, 0.5]
|
16 |
+
)
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("ShynBui/vie_qa", token=os.environ.get("HF_TOKEN"))
|
19 |
+
model = AutoModelForQuestionAnswering.from_pretrained("ShynBui/vie_qa", token=os.environ.get("HF_TOKEN"))
|
20 |
+
|
21 |
+
headers = {
|
22 |
+
"Accept": "application/json",
|
23 |
+
"Authorization": "Bearer "+ os.environ.get("HF_TOKEN"),
|
24 |
+
"Content-Type": "application/json"
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def query(payload):
|
29 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
30 |
+
return response.json()
|
31 |
+
|
32 |
+
|
33 |
+
def greet(quote):
|
34 |
+
sources = []
|
35 |
+
answers = []
|
36 |
+
scores = []
|
37 |
+
ids = []
|
38 |
+
|
39 |
+
docs = ensemble_retriever.get_relevant_documents(quote)
|
40 |
+
|
41 |
+
for i in docs:
|
42 |
+
context = ViTokenizer.tokenize(i.page_content)
|
43 |
+
question = ViTokenizer.tokenize(quote)
|
44 |
+
print("source:", i.metadata['source'])
|
45 |
+
sources.append(i.metadata['source'])
|
46 |
+
output = query({
|
47 |
+
"inputs": {
|
48 |
+
"question": question,
|
49 |
+
"context": context[:256]
|
50 |
+
},
|
51 |
+
})
|
52 |
+
while "error" in output:
|
53 |
+
# print('fail')
|
54 |
+
time.sleep(1)
|
55 |
+
output = query({
|
56 |
+
"inputs": {
|
57 |
+
"question": question,
|
58 |
+
"context": context[:256]
|
59 |
+
},
|
60 |
+
})
|
61 |
+
|
62 |
+
answers.append(output['answer'])
|
63 |
+
return answers
|
64 |
+
|
65 |
+
def greet2(quote):
|
66 |
+
answers = []
|
67 |
+
docs = ensemble_retriever.get_relevant_documents(quote)
|
68 |
+
|
69 |
+
for i in docs:
|
70 |
+
context = ViTokenizer.tokenize(i.page_content)
|
71 |
+
question = ViTokenizer.tokenize(quote)
|
72 |
+
|
73 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
74 |
+
|
75 |
+
outputs = model(**inputs)
|
76 |
+
|
77 |
+
start_index = torch.argmax(outputs.start_logits)
|
78 |
+
end_index = torch.argmax(outputs.end_logits) + 1
|
79 |
+
|
80 |
+
answer = tokenizer.convert_tokens_to_string(
|
81 |
+
tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][start_index:end_index]))
|
82 |
+
|
83 |
+
answers.append(answer)
|
84 |
+
|
85 |
+
return answers
|
86 |
|
|
|
|
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
|
|
|
|
|
90 |
|
91 |
+
iface = gr.Interface(fn=greet2, inputs="text", outputs="text")
|
92 |
+
iface.launch()
|