Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import numpy as np | |
| import os | |
| from utils import * | |
| import gradio as gr | |
| data = pd.read_csv(os.path.join(os.getcwd(), "data_csv.csv")) | |
| documents = create_Doc(data) | |
| embedding = load_embedding() | |
| vectorstore = load_vectorstore(documents=documents, embeddings=embedding) | |
| def process(list_text, search_type = 'mmr'): | |
| list_text = eval(list_text) | |
| list_text = [title.lower() for title in list_text] | |
| # print(list_text) | |
| retrieve = vectorstore.as_retriever(search_type= search_type) | |
| retrieves = [] | |
| for i in list_text: | |
| # print(i) | |
| new_suggest = retrieve.invoke(i) | |
| for j in new_suggest: | |
| if j.metadata['name'].lower() != i: | |
| retrieves.append(j.metadata['name']) | |
| return retrieves | |
| if __name__ == "__main__": | |
| demo = gr.Interface(fn=process, inputs='text', outputs='text') | |
| demo.launch() |