Spaces:
Running
Running
""" | |
litellm.Router Types - includes RouterConfig, UpdateRouterConfig, ModelInfo etc | |
""" | |
import datetime | |
import enum | |
import uuid | |
from typing import Any, Dict, List, Literal, Optional, Tuple, Union, get_type_hints | |
import httpx | |
from httpx import AsyncClient, Client | |
from openai import AsyncAzureOpenAI, AsyncOpenAI, AzureOpenAI, OpenAI | |
from pydantic import BaseModel, ConfigDict, Field | |
from typing_extensions import Required, TypedDict | |
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler | |
from ..exceptions import RateLimitError | |
from .completion import CompletionRequest | |
from .embedding import EmbeddingRequest | |
from .llms.openai import OpenAIFileObject | |
from .llms.vertex_ai import VERTEX_CREDENTIALS_TYPES | |
from .utils import ModelResponse, ProviderSpecificModelInfo | |
class ConfigurableClientsideParamsCustomAuth(TypedDict): | |
api_base: str | |
CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = Optional[ | |
List[Union[str, ConfigurableClientsideParamsCustomAuth]] | |
] | |
class ModelConfig(BaseModel): | |
model_name: str | |
litellm_params: Union[CompletionRequest, EmbeddingRequest] | |
tpm: int | |
rpm: int | |
model_config = ConfigDict(protected_namespaces=()) | |
class RouterConfig(BaseModel): | |
model_list: List[ModelConfig] | |
redis_url: Optional[str] = None | |
redis_host: Optional[str] = None | |
redis_port: Optional[int] = None | |
redis_password: Optional[str] = None | |
cache_responses: Optional[bool] = False | |
cache_kwargs: Optional[Dict] = {} | |
caching_groups: Optional[List[Tuple[str, List[str]]]] = None | |
client_ttl: Optional[int] = 3600 | |
num_retries: Optional[int] = 0 | |
timeout: Optional[float] = None | |
default_litellm_params: Optional[Dict[str, str]] = {} | |
set_verbose: Optional[bool] = False | |
fallbacks: Optional[List] = [] | |
allowed_fails: Optional[int] = None | |
context_window_fallbacks: Optional[List] = [] | |
model_group_alias: Optional[Dict[str, List[str]]] = {} | |
retry_after: Optional[int] = 0 | |
routing_strategy: Literal[ | |
"simple-shuffle", | |
"least-busy", | |
"usage-based-routing", | |
"latency-based-routing", | |
] = "simple-shuffle" | |
model_config = ConfigDict(protected_namespaces=()) | |
class UpdateRouterConfig(BaseModel): | |
""" | |
Set of params that you can modify via `router.update_settings()`. | |
""" | |
routing_strategy_args: Optional[dict] = None | |
routing_strategy: Optional[str] = None | |
model_group_retry_policy: Optional[dict] = None | |
allowed_fails: Optional[int] = None | |
cooldown_time: Optional[float] = None | |
num_retries: Optional[int] = None | |
timeout: Optional[float] = None | |
max_retries: Optional[int] = None | |
retry_after: Optional[float] = None | |
fallbacks: Optional[List[dict]] = None | |
context_window_fallbacks: Optional[List[dict]] = None | |
model_config = ConfigDict(protected_namespaces=()) | |
class ModelInfo(BaseModel): | |
id: Optional[ | |
str | |
] # Allow id to be optional on input, but it will always be present as a str in the model instance | |
db_model: bool = False # used for proxy - to separate models which are stored in the db vs. config. | |
updated_at: Optional[datetime.datetime] = None | |
updated_by: Optional[str] = None | |
created_at: Optional[datetime.datetime] = None | |
created_by: Optional[str] = None | |
base_model: Optional[ | |
str | |
] = None # specify if the base model is azure/gpt-3.5-turbo etc for accurate cost tracking | |
tier: Optional[Literal["free", "paid"]] = None | |
""" | |
Team Model Specific Fields | |
""" | |
# the team id that this model belongs to | |
team_id: Optional[str] = None | |
# the model_name that can be used by the team when making LLM calls | |
team_public_model_name: Optional[str] = None | |
def __init__(self, id: Optional[Union[str, int]] = None, **params): | |
if id is None: | |
id = str(uuid.uuid4()) # Generate a UUID if id is None or not provided | |
elif isinstance(id, int): | |
id = str(id) | |
super().__init__(id=id, **params) | |
model_config = ConfigDict(extra="allow") | |
def __contains__(self, key): | |
# Define custom behavior for the 'in' operator | |
return hasattr(self, key) | |
def get(self, key, default=None): | |
# Custom .get() method to access attributes with a default value if the attribute doesn't exist | |
return getattr(self, key, default) | |
def __getitem__(self, key): | |
# Allow dictionary-style access to attributes | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
# Allow dictionary-style assignment of attributes | |
setattr(self, key, value) | |
class CredentialLiteLLMParams(BaseModel): | |
api_key: Optional[str] = None | |
api_base: Optional[str] = None | |
api_version: Optional[str] = None | |
## VERTEX AI ## | |
vertex_project: Optional[str] = None | |
vertex_location: Optional[str] = None | |
vertex_credentials: Optional[Union[str, dict]] = None | |
## UNIFIED PROJECT/REGION ## | |
region_name: Optional[str] = None | |
## AWS BEDROCK / SAGEMAKER ## | |
aws_access_key_id: Optional[str] = None | |
aws_secret_access_key: Optional[str] = None | |
aws_region_name: Optional[str] = None | |
## IBM WATSONX ## | |
watsonx_region_name: Optional[str] = None | |
class CustomPricingLiteLLMParams(BaseModel): | |
## CUSTOM PRICING ## | |
input_cost_per_token: Optional[float] = None | |
output_cost_per_token: Optional[float] = None | |
input_cost_per_second: Optional[float] = None | |
output_cost_per_second: Optional[float] = None | |
input_cost_per_pixel: Optional[float] = None | |
output_cost_per_pixel: Optional[float] = None | |
class GenericLiteLLMParams(CredentialLiteLLMParams, CustomPricingLiteLLMParams): | |
""" | |
LiteLLM Params without 'model' arg (used across completion / assistants api) | |
""" | |
custom_llm_provider: Optional[str] = None | |
tpm: Optional[int] = None | |
rpm: Optional[int] = None | |
timeout: Optional[ | |
Union[float, str, httpx.Timeout] | |
] = None # if str, pass in as os.environ/ | |
stream_timeout: Optional[ | |
Union[float, str] | |
] = None # timeout when making stream=True calls, if str, pass in as os.environ/ | |
max_retries: Optional[int] = None | |
organization: Optional[str] = None # for openai orgs | |
configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None | |
litellm_credential_name: Optional[str] = None | |
## LOGGING PARAMS ## | |
litellm_trace_id: Optional[str] = None | |
max_file_size_mb: Optional[float] = None | |
# Deployment budgets | |
max_budget: Optional[float] = None | |
budget_duration: Optional[str] = None | |
use_in_pass_through: Optional[bool] = False | |
model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True) | |
merge_reasoning_content_in_choices: Optional[bool] = False | |
model_info: Optional[Dict] = None | |
def __init__( | |
self, | |
custom_llm_provider: Optional[str] = None, | |
max_retries: Optional[Union[int, str]] = None, | |
tpm: Optional[int] = None, | |
rpm: Optional[int] = None, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
api_version: Optional[str] = None, | |
timeout: Optional[Union[float, str]] = None, # if str, pass in as os.environ/ | |
stream_timeout: Optional[Union[float, str]] = ( | |
None # timeout when making stream=True calls, if str, pass in as os.environ/ | |
), | |
organization: Optional[str] = None, # for openai orgs | |
## LOGGING PARAMS ## | |
litellm_trace_id: Optional[str] = None, | |
## UNIFIED PROJECT/REGION ## | |
region_name: Optional[str] = None, | |
## VERTEX AI ## | |
vertex_project: Optional[str] = None, | |
vertex_location: Optional[str] = None, | |
vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES] = None, | |
## AWS BEDROCK / SAGEMAKER ## | |
aws_access_key_id: Optional[str] = None, | |
aws_secret_access_key: Optional[str] = None, | |
aws_region_name: Optional[str] = None, | |
## IBM WATSONX ## | |
watsonx_region_name: Optional[str] = None, | |
input_cost_per_token: Optional[float] = None, | |
output_cost_per_token: Optional[float] = None, | |
input_cost_per_second: Optional[float] = None, | |
output_cost_per_second: Optional[float] = None, | |
max_file_size_mb: Optional[float] = None, | |
# Deployment budgets | |
max_budget: Optional[float] = None, | |
budget_duration: Optional[str] = None, | |
# Pass through params | |
use_in_pass_through: Optional[bool] = False, | |
# This will merge the reasoning content in the choices | |
merge_reasoning_content_in_choices: Optional[bool] = False, | |
model_info: Optional[Dict] = None, | |
**params, | |
): | |
args = locals() | |
args.pop("max_retries", None) | |
args.pop("self", None) | |
args.pop("params", None) | |
args.pop("__class__", None) | |
if max_retries is not None and isinstance(max_retries, str): | |
max_retries = int(max_retries) # cast to int | |
# We need to keep max_retries in args since it's a parameter of GenericLiteLLMParams | |
args[ | |
"max_retries" | |
] = max_retries # Put max_retries back in args after popping it | |
super().__init__(**args, **params) | |
def __contains__(self, key): | |
# Define custom behavior for the 'in' operator | |
return hasattr(self, key) | |
def get(self, key, default=None): | |
# Custom .get() method to access attributes with a default value if the attribute doesn't exist | |
return getattr(self, key, default) | |
def __getitem__(self, key): | |
# Allow dictionary-style access to attributes | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
# Allow dictionary-style assignment of attributes | |
setattr(self, key, value) | |
class LiteLLM_Params(GenericLiteLLMParams): | |
""" | |
LiteLLM Params with 'model' requirement - used for completions | |
""" | |
model: str | |
model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True) | |
def __init__( | |
self, | |
model: str, | |
custom_llm_provider: Optional[str] = None, | |
max_retries: Optional[Union[int, str]] = None, | |
tpm: Optional[int] = None, | |
rpm: Optional[int] = None, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
api_version: Optional[str] = None, | |
timeout: Optional[Union[float, str]] = None, # if str, pass in as os.environ/ | |
stream_timeout: Optional[Union[float, str]] = ( | |
None # timeout when making stream=True calls, if str, pass in as os.environ/ | |
), | |
organization: Optional[str] = None, # for openai orgs | |
## VERTEX AI ## | |
vertex_project: Optional[str] = None, | |
vertex_location: Optional[str] = None, | |
## AWS BEDROCK / SAGEMAKER ## | |
aws_access_key_id: Optional[str] = None, | |
aws_secret_access_key: Optional[str] = None, | |
aws_region_name: Optional[str] = None, | |
# OpenAI / Azure Whisper | |
# set a max-size of file that can be passed to litellm proxy | |
max_file_size_mb: Optional[float] = None, | |
# will use deployment on pass-through endpoints if True | |
use_in_pass_through: Optional[bool] = False, | |
**params, | |
): | |
args = locals() | |
args.pop("max_retries", None) | |
args.pop("self", None) | |
args.pop("params", None) | |
args.pop("__class__", None) | |
if max_retries is not None and isinstance(max_retries, str): | |
max_retries = int(max_retries) # cast to int | |
super().__init__(max_retries=max_retries, **args, **params) | |
def __contains__(self, key): | |
# Define custom behavior for the 'in' operator | |
return hasattr(self, key) | |
def get(self, key, default=None): | |
# Custom .get() method to access attributes with a default value if the attribute doesn't exist | |
return getattr(self, key, default) | |
def __getitem__(self, key): | |
# Allow dictionary-style access to attributes | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
# Allow dictionary-style assignment of attributes | |
setattr(self, key, value) | |
class updateLiteLLMParams(GenericLiteLLMParams): | |
# This class is used to update the LiteLLM_Params | |
# only differece is model is optional | |
model: Optional[str] = None | |
class updateDeployment(BaseModel): | |
model_name: Optional[str] = None | |
litellm_params: Optional[updateLiteLLMParams] = None | |
model_info: Optional[ModelInfo] = None | |
model_config = ConfigDict(protected_namespaces=()) | |
class LiteLLMParamsTypedDict(TypedDict, total=False): | |
model: str | |
custom_llm_provider: Optional[str] | |
tpm: Optional[int] | |
rpm: Optional[int] | |
order: Optional[int] | |
weight: Optional[int] | |
max_parallel_requests: Optional[int] | |
api_key: Optional[str] | |
api_base: Optional[str] | |
api_version: Optional[str] | |
timeout: Optional[Union[float, str, httpx.Timeout]] | |
stream_timeout: Optional[Union[float, str]] | |
max_retries: Optional[int] | |
organization: Optional[Union[List, str]] # for openai orgs | |
configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS # for allowing api base switching on finetuned models | |
## DROP PARAMS ## | |
drop_params: Optional[bool] | |
## UNIFIED PROJECT/REGION ## | |
region_name: Optional[str] | |
## VERTEX AI ## | |
vertex_project: Optional[str] | |
vertex_location: Optional[str] | |
## AWS BEDROCK / SAGEMAKER ## | |
aws_access_key_id: Optional[str] | |
aws_secret_access_key: Optional[str] | |
aws_region_name: Optional[str] | |
## IBM WATSONX ## | |
watsonx_region_name: Optional[str] | |
## CUSTOM PRICING ## | |
input_cost_per_token: Optional[float] | |
output_cost_per_token: Optional[float] | |
input_cost_per_second: Optional[float] | |
output_cost_per_second: Optional[float] | |
num_retries: Optional[int] | |
## MOCK RESPONSES ## | |
mock_response: Optional[Union[str, ModelResponse, Exception]] | |
# routing params | |
# use this for tag-based routing | |
tags: Optional[List[str]] | |
# deployment budgets | |
max_budget: Optional[float] | |
budget_duration: Optional[str] | |
class DeploymentTypedDict(TypedDict, total=False): | |
model_name: Required[str] | |
litellm_params: Required[LiteLLMParamsTypedDict] | |
model_info: dict | |
SPECIAL_MODEL_INFO_PARAMS = [ | |
"input_cost_per_token", | |
"output_cost_per_token", | |
"input_cost_per_character", | |
"output_cost_per_character", | |
] | |
class Deployment(BaseModel): | |
model_name: str | |
litellm_params: LiteLLM_Params | |
model_info: ModelInfo | |
model_config = ConfigDict(extra="allow", protected_namespaces=()) | |
def __init__( | |
self, | |
model_name: str, | |
litellm_params: LiteLLM_Params, | |
model_info: Optional[Union[ModelInfo, dict]] = None, | |
**params, | |
): | |
if model_info is None: | |
model_info = ModelInfo() | |
elif isinstance(model_info, dict): | |
model_info = ModelInfo(**model_info) | |
for ( | |
key | |
) in ( | |
SPECIAL_MODEL_INFO_PARAMS | |
): # ensures custom pricing info is consistently in 'model_info' | |
field = getattr(litellm_params, key, None) | |
if field is not None: | |
setattr(model_info, key, field) | |
super().__init__( | |
model_info=model_info, | |
model_name=model_name, | |
litellm_params=litellm_params, | |
**params, | |
) | |
def to_json(self, **kwargs): | |
try: | |
return self.model_dump(**kwargs) # noqa | |
except Exception as e: | |
# if using pydantic v1 | |
return self.dict(**kwargs) | |
def __contains__(self, key): | |
# Define custom behavior for the 'in' operator | |
return hasattr(self, key) | |
def get(self, key, default=None): | |
# Custom .get() method to access attributes with a default value if the attribute doesn't exist | |
return getattr(self, key, default) | |
def __getitem__(self, key): | |
# Allow dictionary-style access to attributes | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
# Allow dictionary-style assignment of attributes | |
setattr(self, key, value) | |
class RouterErrors(enum.Enum): | |
""" | |
Enum for router specific errors with common codes | |
""" | |
user_defined_ratelimit_error = "Deployment over user-defined ratelimit." | |
no_deployments_available = "No deployments available for selected model" | |
no_deployments_with_tag_routing = ( | |
"Not allowed to access model due to tags configuration" | |
) | |
no_deployments_with_provider_budget_routing = ( | |
"No deployments available - crossed budget" | |
) | |
class AllowedFailsPolicy(BaseModel): | |
""" | |
Use this to set a custom number of allowed fails/minute before cooling down a deployment | |
If `AuthenticationErrorAllowedFails = 1000`, then 1000 AuthenticationError will be allowed before cooling down a deployment | |
Mapping of Exception type to allowed_fails for each exception | |
https://docs.litellm.ai/docs/exception_mapping | |
""" | |
BadRequestErrorAllowedFails: Optional[int] = None | |
AuthenticationErrorAllowedFails: Optional[int] = None | |
TimeoutErrorAllowedFails: Optional[int] = None | |
RateLimitErrorAllowedFails: Optional[int] = None | |
ContentPolicyViolationErrorAllowedFails: Optional[int] = None | |
InternalServerErrorAllowedFails: Optional[int] = None | |
class RetryPolicy(BaseModel): | |
""" | |
Use this to set a custom number of retries per exception type | |
If RateLimitErrorRetries = 3, then 3 retries will be made for RateLimitError | |
Mapping of Exception type to number of retries | |
https://docs.litellm.ai/docs/exception_mapping | |
""" | |
BadRequestErrorRetries: Optional[int] = None | |
AuthenticationErrorRetries: Optional[int] = None | |
TimeoutErrorRetries: Optional[int] = None | |
RateLimitErrorRetries: Optional[int] = None | |
ContentPolicyViolationErrorRetries: Optional[int] = None | |
InternalServerErrorRetries: Optional[int] = None | |
class AlertingConfig(BaseModel): | |
""" | |
Use this configure alerting for the router. Receive alerts on the following events | |
- LLM API Exceptions | |
- LLM Responses Too Slow | |
- LLM Requests Hanging | |
Args: | |
webhook_url: str - webhook url for alerting, slack provides a webhook url to send alerts to | |
alerting_threshold: Optional[float] = None - threshold for slow / hanging llm responses (in seconds) | |
""" | |
webhook_url: str | |
alerting_threshold: Optional[float] = 300 | |
class ModelGroupInfo(BaseModel): | |
model_group: str | |
providers: List[str] | |
max_input_tokens: Optional[float] = None | |
max_output_tokens: Optional[float] = None | |
input_cost_per_token: Optional[float] = None | |
output_cost_per_token: Optional[float] = None | |
mode: Optional[ | |
Union[ | |
str, | |
Literal[ | |
"chat", | |
"embedding", | |
"completion", | |
"image_generation", | |
"audio_transcription", | |
"rerank", | |
"moderations", | |
], | |
] | |
] = Field(default="chat") | |
tpm: Optional[int] = None | |
rpm: Optional[int] = None | |
supports_parallel_function_calling: bool = Field(default=False) | |
supports_vision: bool = Field(default=False) | |
supports_web_search: bool = Field(default=False) | |
supports_reasoning: bool = Field(default=False) | |
supports_function_calling: bool = Field(default=False) | |
supported_openai_params: Optional[List[str]] = Field(default=[]) | |
configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None | |
def __init__(self, **data): | |
for field_name, field_type in get_type_hints(self.__class__).items(): | |
if field_type == bool and data.get(field_name) is None: | |
data[field_name] = False | |
super().__init__(**data) | |
class AssistantsTypedDict(TypedDict): | |
custom_llm_provider: Literal["azure", "openai"] | |
litellm_params: LiteLLMParamsTypedDict | |
class FineTuningConfig(BaseModel): | |
custom_llm_provider: Literal["azure", "openai"] | |
class CustomRoutingStrategyBase: | |
async def async_get_available_deployment( | |
self, | |
model: str, | |
messages: Optional[List[Dict[str, str]]] = None, | |
input: Optional[Union[str, List]] = None, | |
specific_deployment: Optional[bool] = False, | |
request_kwargs: Optional[Dict] = None, | |
): | |
""" | |
Asynchronously retrieves the available deployment based on the given parameters. | |
Args: | |
model (str): The name of the model. | |
messages (Optional[List[Dict[str, str]]], optional): The list of messages for a given request. Defaults to None. | |
input (Optional[Union[str, List]], optional): The input for a given embedding request. Defaults to None. | |
specific_deployment (Optional[bool], optional): Whether to retrieve a specific deployment. Defaults to False. | |
request_kwargs (Optional[Dict], optional): Additional request keyword arguments. Defaults to None. | |
Returns: | |
Returns an element from litellm.router.model_list | |
""" | |
pass | |
def get_available_deployment( | |
self, | |
model: str, | |
messages: Optional[List[Dict[str, str]]] = None, | |
input: Optional[Union[str, List]] = None, | |
specific_deployment: Optional[bool] = False, | |
request_kwargs: Optional[Dict] = None, | |
): | |
""" | |
Synchronously retrieves the available deployment based on the given parameters. | |
Args: | |
model (str): The name of the model. | |
messages (Optional[List[Dict[str, str]]], optional): The list of messages for a given request. Defaults to None. | |
input (Optional[Union[str, List]], optional): The input for a given embedding request. Defaults to None. | |
specific_deployment (Optional[bool], optional): Whether to retrieve a specific deployment. Defaults to False. | |
request_kwargs (Optional[Dict], optional): Additional request keyword arguments. Defaults to None. | |
Returns: | |
Returns an element from litellm.router.model_list | |
""" | |
pass | |
class RouterGeneralSettings(BaseModel): | |
async_only_mode: bool = Field( | |
default=False | |
) # this will only initialize async clients. Good for memory utils | |
pass_through_all_models: bool = Field( | |
default=False | |
) # if passed a model not llm_router model list, pass through the request to litellm.acompletion/embedding | |
class RouterRateLimitErrorBasic(ValueError): | |
""" | |
Raise a basic error inside helper functions. | |
""" | |
def __init__( | |
self, | |
model: str, | |
): | |
self.model = model | |
_message = f"{RouterErrors.no_deployments_available.value}." | |
super().__init__(_message) | |
class RouterRateLimitError(ValueError): | |
def __init__( | |
self, | |
model: str, | |
cooldown_time: float, | |
enable_pre_call_checks: bool, | |
cooldown_list: List, | |
): | |
self.model = model | |
self.cooldown_time = cooldown_time | |
self.enable_pre_call_checks = enable_pre_call_checks | |
self.cooldown_list = cooldown_list | |
_message = f"{RouterErrors.no_deployments_available.value}, Try again in {cooldown_time} seconds. Passed model={model}. pre-call-checks={enable_pre_call_checks}, cooldown_list={cooldown_list}" | |
super().__init__(_message) | |
class RouterModelGroupAliasItem(TypedDict): | |
model: str | |
hidden: bool # if 'True', don't return on `.get_model_list` | |
VALID_LITELLM_ENVIRONMENTS = [ | |
"development", | |
"staging", | |
"production", | |
] | |
class RoutingStrategy(enum.Enum): | |
LEAST_BUSY = "least-busy" | |
LATENCY_BASED = "latency-based-routing" | |
COST_BASED = "cost-based-routing" | |
USAGE_BASED_ROUTING_V2 = "usage-based-routing-v2" | |
USAGE_BASED_ROUTING = "usage-based-routing" | |
PROVIDER_BUDGET_LIMITING = "provider-budget-routing" | |
class RouterCacheEnum(enum.Enum): | |
TPM = "global_router:{id}:{model}:tpm:{current_minute}" | |
RPM = "global_router:{id}:{model}:rpm:{current_minute}" | |
class GenericBudgetWindowDetails(BaseModel): | |
"""Details about a provider's budget window""" | |
budget_start: float | |
spend_key: str | |
start_time_key: str | |
ttl_seconds: int | |
OptionalPreCallChecks = List[ | |
Literal[ | |
"prompt_caching", "router_budget_limiting", "responses_api_deployment_check" | |
] | |
] | |
class LiteLLM_RouterFileObject(TypedDict, total=False): | |
""" | |
Tracking the litellm params hash, used for mapping the file id to the right model | |
""" | |
litellm_params_sensitive_credential_hash: str | |
file_object: OpenAIFileObject | |