Spaces:
Running
Running
""" | |
Class to handle llm wildcard routing and regex pattern matching | |
""" | |
import copy | |
import re | |
from re import Match | |
from typing import Dict, List, Optional, Tuple | |
from litellm import get_llm_provider | |
from litellm._logging import verbose_router_logger | |
class PatternUtils: | |
def calculate_pattern_specificity(pattern: str) -> Tuple[int, int]: | |
""" | |
Calculate pattern specificity based on length and complexity. | |
Args: | |
pattern: Regex pattern to analyze | |
Returns: | |
Tuple of (length, complexity) for sorting | |
""" | |
complexity_chars = ["*", "+", "?", "\\", "^", "$", "|", "(", ")"] | |
ret_val = ( | |
len(pattern), # Longer patterns more specific | |
sum( | |
pattern.count(char) for char in complexity_chars | |
), # More regex complexity | |
) | |
return ret_val | |
def sorted_patterns( | |
patterns: Dict[str, List[Dict]] | |
) -> List[Tuple[str, List[Dict]]]: | |
""" | |
Cached property for patterns sorted by specificity. | |
Returns: | |
Sorted list of pattern-deployment tuples | |
""" | |
return sorted( | |
patterns.items(), | |
key=lambda x: PatternUtils.calculate_pattern_specificity(x[0]), | |
reverse=True, | |
) | |
class PatternMatchRouter: | |
""" | |
Class to handle llm wildcard routing and regex pattern matching | |
doc: https://docs.litellm.ai/docs/proxy/configs#provider-specific-wildcard-routing | |
This class will store a mapping for regex pattern: List[Deployments] | |
""" | |
def __init__(self): | |
self.patterns: Dict[str, List] = {} | |
def add_pattern(self, pattern: str, llm_deployment: Dict): | |
""" | |
Add a regex pattern and the corresponding llm deployments to the patterns | |
Args: | |
pattern: str | |
llm_deployment: str or List[str] | |
""" | |
# Convert the pattern to a regex | |
regex = self._pattern_to_regex(pattern) | |
if regex not in self.patterns: | |
self.patterns[regex] = [] | |
self.patterns[regex].append(llm_deployment) | |
def _pattern_to_regex(self, pattern: str) -> str: | |
""" | |
Convert a wildcard pattern to a regex pattern | |
example: | |
pattern: openai/* | |
regex: openai/.* | |
pattern: openai/fo::*::static::* | |
regex: openai/fo::.*::static::.* | |
Args: | |
pattern: str | |
Returns: | |
str: regex pattern | |
""" | |
# # Replace '*' with '.*' for regex matching | |
# regex = pattern.replace("*", ".*") | |
# # Escape other special characters | |
# regex = re.escape(regex).replace(r"\.\*", ".*") | |
# return f"^{regex}$" | |
return re.escape(pattern).replace(r"\*", "(.*)") | |
def _return_pattern_matched_deployments( | |
self, matched_pattern: Match, deployments: List[Dict] | |
) -> List[Dict]: | |
new_deployments = [] | |
for deployment in deployments: | |
new_deployment = copy.deepcopy(deployment) | |
new_deployment["litellm_params"][ | |
"model" | |
] = PatternMatchRouter.set_deployment_model_name( | |
matched_pattern=matched_pattern, | |
litellm_deployment_litellm_model=deployment["litellm_params"]["model"], | |
) | |
new_deployments.append(new_deployment) | |
return new_deployments | |
def route( | |
self, request: Optional[str], filtered_model_names: Optional[List[str]] = None | |
) -> Optional[List[Dict]]: | |
""" | |
Route a requested model to the corresponding llm deployments based on the regex pattern | |
loop through all the patterns and find the matching pattern | |
if a pattern is found, return the corresponding llm deployments | |
if no pattern is found, return None | |
Args: | |
request: str - the received model name from the user (can be a wildcard route). If none, No deployments will be returned. | |
filtered_model_names: Optional[List[str]] - if provided, only return deployments that match the filtered_model_names | |
Returns: | |
Optional[List[Deployment]]: llm deployments | |
""" | |
try: | |
if request is None: | |
return None | |
sorted_patterns = PatternUtils.sorted_patterns(self.patterns) | |
regex_filtered_model_names = ( | |
[self._pattern_to_regex(m) for m in filtered_model_names] | |
if filtered_model_names is not None | |
else [] | |
) | |
for pattern, llm_deployments in sorted_patterns: | |
if ( | |
filtered_model_names is not None | |
and pattern not in regex_filtered_model_names | |
): | |
continue | |
pattern_match = re.match(pattern, request) | |
if pattern_match: | |
return self._return_pattern_matched_deployments( | |
matched_pattern=pattern_match, deployments=llm_deployments | |
) | |
except Exception as e: | |
verbose_router_logger.debug(f"Error in PatternMatchRouter.route: {str(e)}") | |
return None # No matching pattern found | |
def set_deployment_model_name( | |
matched_pattern: Match, | |
litellm_deployment_litellm_model: str, | |
) -> str: | |
""" | |
Set the model name for the matched pattern llm deployment | |
E.g.: | |
Case 1: | |
model_name: llmengine/* (can be any regex pattern or wildcard pattern) | |
litellm_params: | |
model: openai/* | |
if model_name = "llmengine/foo" -> model = "openai/foo" | |
Case 2: | |
model_name: llmengine/fo::*::static::* | |
litellm_params: | |
model: openai/fo::*::static::* | |
if model_name = "llmengine/foo::bar::static::baz" -> model = "openai/foo::bar::static::baz" | |
Case 3: | |
model_name: *meta.llama3* | |
litellm_params: | |
model: bedrock/meta.llama3* | |
if model_name = "hello-world-meta.llama3-70b" -> model = "bedrock/meta.llama3-70b" | |
""" | |
## BASE CASE: if the deployment model name does not contain a wildcard, return the deployment model name | |
if "*" not in litellm_deployment_litellm_model: | |
return litellm_deployment_litellm_model | |
wildcard_count = litellm_deployment_litellm_model.count("*") | |
# Extract all dynamic segments from the request | |
dynamic_segments = matched_pattern.groups() | |
if len(dynamic_segments) > wildcard_count: | |
return ( | |
matched_pattern.string | |
) # default to the user input, if unable to map based on wildcards. | |
# Replace the corresponding wildcards in the litellm model pattern with extracted segments | |
for segment in dynamic_segments: | |
litellm_deployment_litellm_model = litellm_deployment_litellm_model.replace( | |
"*", segment, 1 | |
) | |
return litellm_deployment_litellm_model | |
def get_pattern( | |
self, model: str, custom_llm_provider: Optional[str] = None | |
) -> Optional[List[Dict]]: | |
""" | |
Check if a pattern exists for the given model and custom llm provider | |
Args: | |
model: str | |
custom_llm_provider: Optional[str] | |
Returns: | |
bool: True if pattern exists, False otherwise | |
""" | |
if custom_llm_provider is None: | |
try: | |
( | |
_, | |
custom_llm_provider, | |
_, | |
_, | |
) = get_llm_provider(model=model) | |
except Exception: | |
# get_llm_provider raises exception when provider is unknown | |
pass | |
return self.route(model) or self.route(f"{custom_llm_provider}/{model}") | |
def get_deployments_by_pattern( | |
self, model: str, custom_llm_provider: Optional[str] = None | |
) -> List[Dict]: | |
""" | |
Get the deployments by pattern | |
Args: | |
model: str | |
custom_llm_provider: Optional[str] | |
Returns: | |
List[Dict]: llm deployments matching the pattern | |
""" | |
pattern_match = self.get_pattern(model, custom_llm_provider) | |
if pattern_match: | |
return pattern_match | |
return [] | |
# Example usage: | |
# router = PatternRouter() | |
# router.add_pattern('openai/*', [Deployment(), Deployment()]) | |
# router.add_pattern('openai/fo::*::static::*', Deployment()) | |
# print(router.route('openai/gpt-4')) # Output: [Deployment(), Deployment()] | |
# print(router.route('openai/fo::hi::static::hi')) # Output: [Deployment()] | |
# print(router.route('something/else')) # Output: None | |