Spaces:
Sleeping
Sleeping
""" | |
Handles transforming from Responses API -> LiteLLM completion (Chat Completion API) | |
""" | |
from typing import Any, Dict, List, Optional, Union | |
from openai.types.responses.tool_param import FunctionToolParam | |
from typing_extensions import TypedDict | |
HAS_ENTERPRISE_DIRECTORY = False | |
try: | |
from enterprise.enterprise_hooks.session_handler import ( | |
_ENTERPRISE_ResponsesSessionHandler, | |
) | |
HAS_ENTERPRISE_DIRECTORY = True | |
except ImportError: | |
_ENTERPRISE_ResponsesSessionHandler = None # type: ignore | |
HAS_ENTERPRISE_DIRECTORY = False | |
from litellm.caching import InMemoryCache | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
from litellm.types.llms.openai import ( | |
AllMessageValues, | |
ChatCompletionResponseMessage, | |
ChatCompletionSystemMessage, | |
ChatCompletionToolCallChunk, | |
ChatCompletionToolCallFunctionChunk, | |
ChatCompletionToolMessage, | |
ChatCompletionToolParam, | |
ChatCompletionToolParamFunctionChunk, | |
ChatCompletionUserMessage, | |
GenericChatCompletionMessage, | |
Reasoning, | |
ResponseAPIUsage, | |
ResponseInputParam, | |
ResponsesAPIOptionalRequestParams, | |
ResponsesAPIResponse, | |
ResponseTextConfig, | |
) | |
from litellm.types.responses.main import ( | |
GenericResponseOutputItem, | |
GenericResponseOutputItemContentAnnotation, | |
OutputFunctionToolCall, | |
OutputText, | |
) | |
from litellm.types.utils import ( | |
ChatCompletionAnnotation, | |
ChatCompletionMessageToolCall, | |
Choices, | |
Function, | |
Message, | |
ModelResponse, | |
Usage, | |
) | |
########### Initialize Classes used for Responses API ########### | |
TOOL_CALLS_CACHE = InMemoryCache() | |
class ChatCompletionSession(TypedDict, total=False): | |
messages: List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
ChatCompletionResponseMessage, | |
Message, | |
] | |
] | |
litellm_session_id: Optional[str] | |
########### End of Initialize Classes used for Responses API ########### | |
class LiteLLMCompletionResponsesConfig: | |
def get_supported_openai_params(model: str) -> list: | |
""" | |
LiteLLM Adapter from OpenAI Responses API to Chat Completion API supports a subset of OpenAI Responses API params | |
""" | |
return [ | |
"input", | |
"model", | |
"instructions", | |
"max_output_tokens", | |
"metadata", | |
"parallel_tool_calls", | |
"previous_response_id", | |
"stream", | |
"temperature", | |
"tool_choice", | |
"tools", | |
"top_p", | |
"user", | |
] | |
def transform_responses_api_request_to_chat_completion_request( | |
model: str, | |
input: Union[str, ResponseInputParam], | |
responses_api_request: ResponsesAPIOptionalRequestParams, | |
custom_llm_provider: Optional[str] = None, | |
stream: Optional[bool] = None, | |
**kwargs, | |
) -> dict: | |
""" | |
Transform a Responses API request into a Chat Completion request | |
""" | |
litellm_completion_request: dict = { | |
"messages": LiteLLMCompletionResponsesConfig.transform_responses_api_input_to_messages( | |
input=input, | |
responses_api_request=responses_api_request, | |
), | |
"model": model, | |
"tool_choice": responses_api_request.get("tool_choice"), | |
"tools": LiteLLMCompletionResponsesConfig.transform_responses_api_tools_to_chat_completion_tools( | |
responses_api_request.get("tools") or [] # type: ignore | |
), | |
"top_p": responses_api_request.get("top_p"), | |
"user": responses_api_request.get("user"), | |
"temperature": responses_api_request.get("temperature"), | |
"parallel_tool_calls": responses_api_request.get("parallel_tool_calls"), | |
"max_tokens": responses_api_request.get("max_output_tokens"), | |
"stream": stream, | |
"metadata": kwargs.get("metadata"), | |
"service_tier": kwargs.get("service_tier"), | |
# litellm specific params | |
"custom_llm_provider": custom_llm_provider, | |
} | |
# Responses API `Completed` events require usage, we pass `stream_options` to litellm.completion to include usage | |
if stream is True: | |
stream_options = { | |
"include_usage": True, | |
} | |
litellm_completion_request["stream_options"] = stream_options | |
litellm_logging_obj: Optional[LiteLLMLoggingObj] = kwargs.get( | |
"litellm_logging_obj" | |
) | |
if litellm_logging_obj: | |
litellm_logging_obj.stream_options = stream_options | |
# only pass non-None values | |
litellm_completion_request = { | |
k: v for k, v in litellm_completion_request.items() if v is not None | |
} | |
return litellm_completion_request | |
def transform_responses_api_input_to_messages( | |
input: Union[str, ResponseInputParam], | |
responses_api_request: Union[ResponsesAPIOptionalRequestParams, dict], | |
) -> List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
ChatCompletionResponseMessage, | |
Message, | |
] | |
]: | |
""" | |
Transform a Responses API input into a list of messages | |
""" | |
messages: List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
ChatCompletionResponseMessage, | |
Message, | |
] | |
] = [] | |
if responses_api_request.get("instructions"): | |
messages.append( | |
LiteLLMCompletionResponsesConfig.transform_instructions_to_system_message( | |
responses_api_request.get("instructions") | |
) | |
) | |
messages.extend( | |
LiteLLMCompletionResponsesConfig._transform_response_input_param_to_chat_completion_message( | |
input=input, | |
) | |
) | |
return messages | |
async def async_responses_api_session_handler( | |
previous_response_id: str, | |
litellm_completion_request: dict, | |
) -> dict: | |
""" | |
Async hook to get the chain of previous input and output pairs and return a list of Chat Completion messages | |
""" | |
if ( | |
HAS_ENTERPRISE_DIRECTORY is True | |
and _ENTERPRISE_ResponsesSessionHandler is not None | |
): | |
chat_completion_session = ChatCompletionSession( | |
messages=[], litellm_session_id=None | |
) | |
if previous_response_id: | |
chat_completion_session = await _ENTERPRISE_ResponsesSessionHandler.get_chat_completion_message_history_for_previous_response_id( | |
previous_response_id=previous_response_id | |
) | |
_messages = litellm_completion_request.get("messages") or [] | |
session_messages = chat_completion_session.get("messages") or [] | |
litellm_completion_request["messages"] = session_messages + _messages | |
litellm_completion_request["litellm_trace_id"] = ( | |
chat_completion_session.get("litellm_session_id") | |
) | |
return litellm_completion_request | |
def _transform_response_input_param_to_chat_completion_message( | |
input: Union[str, ResponseInputParam], | |
) -> List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
ChatCompletionResponseMessage, | |
] | |
]: | |
""" | |
Transform a ResponseInputParam into a Chat Completion message | |
""" | |
messages: List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
ChatCompletionResponseMessage, | |
] | |
] = [] | |
tool_call_output_messages: List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
ChatCompletionResponseMessage, | |
] | |
] = [] | |
if isinstance(input, str): | |
messages.append(ChatCompletionUserMessage(role="user", content=input)) | |
elif isinstance(input, list): | |
for _input in input: | |
chat_completion_messages = LiteLLMCompletionResponsesConfig._transform_responses_api_input_item_to_chat_completion_message( | |
input_item=_input | |
) | |
if LiteLLMCompletionResponsesConfig._is_input_item_tool_call_output( | |
input_item=_input | |
): | |
tool_call_output_messages.extend(chat_completion_messages) | |
else: | |
messages.extend(chat_completion_messages) | |
messages.extend(tool_call_output_messages) | |
return messages | |
def _ensure_tool_call_output_has_corresponding_tool_call( | |
messages: List[Union[AllMessageValues, GenericChatCompletionMessage]], | |
) -> bool: | |
""" | |
If any tool call output is present, ensure there is a corresponding tool call/tool_use block | |
""" | |
for message in messages: | |
if message.get("role") == "tool": | |
return True | |
return False | |
def _transform_responses_api_input_item_to_chat_completion_message( | |
input_item: Any, | |
) -> List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionResponseMessage, | |
] | |
]: | |
""" | |
Transform a Responses API input item into a Chat Completion message | |
- EasyInputMessageParam | |
- Message | |
- ResponseOutputMessageParam | |
- ResponseFileSearchToolCallParam | |
- ResponseComputerToolCallParam | |
- ComputerCallOutput | |
- ResponseFunctionWebSearchParam | |
- ResponseFunctionToolCallParam | |
- FunctionCallOutput | |
- ResponseReasoningItemParam | |
- ItemReference | |
""" | |
if LiteLLMCompletionResponsesConfig._is_input_item_tool_call_output(input_item): | |
# handle executed tool call results | |
return LiteLLMCompletionResponsesConfig._transform_responses_api_tool_call_output_to_chat_completion_message( | |
tool_call_output=input_item | |
) | |
else: | |
return [ | |
GenericChatCompletionMessage( | |
role=input_item.get("role") or "user", | |
content=LiteLLMCompletionResponsesConfig._transform_responses_api_content_to_chat_completion_content( | |
input_item.get("content") | |
), | |
) | |
] | |
def _is_input_item_tool_call_output(input_item: Any) -> bool: | |
""" | |
Check if the input item is a tool call output | |
""" | |
return input_item.get("type") in [ | |
"function_call_output", | |
"web_search_call", | |
"computer_call_output", | |
] | |
def _transform_responses_api_tool_call_output_to_chat_completion_message( | |
tool_call_output: Dict[str, Any], | |
) -> List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionResponseMessage, | |
] | |
]: | |
""" | |
ChatCompletionToolMessage is used to indicate the output from a tool call | |
""" | |
tool_output_message = ChatCompletionToolMessage( | |
role="tool", | |
content=tool_call_output.get("output") or "", | |
tool_call_id=tool_call_output.get("call_id") or "", | |
) | |
_tool_use_definition = TOOL_CALLS_CACHE.get_cache( | |
key=tool_call_output.get("call_id") or "", | |
) | |
if _tool_use_definition: | |
""" | |
Append the tool use definition to the list of messages | |
Providers like Anthropic require the tool use definition to be included with the tool output | |
- Input: | |
{'function': | |
arguments:'{"command": ["echo","<html>\\n<head>\\n <title>Hello</title>\\n</head>\\n<body>\\n <h1>Hi</h1>\\n</body>\\n</html>",">","index.html"]}', | |
name='shell', | |
'id': 'toolu_018KFWsEySHjdKZPdUzXpymJ', | |
'type': 'function' | |
} | |
- Output: | |
{ | |
"id": "toolu_018KFWsEySHjdKZPdUzXpymJ", | |
"type": "function", | |
"function": { | |
"name": "get_weather", | |
"arguments": "{\"latitude\":48.8566,\"longitude\":2.3522}" | |
} | |
} | |
""" | |
function: dict = _tool_use_definition.get("function") or {} | |
tool_call_chunk = ChatCompletionToolCallChunk( | |
id=_tool_use_definition.get("id") or "", | |
type=_tool_use_definition.get("type") or "function", | |
function=ChatCompletionToolCallFunctionChunk( | |
name=function.get("name") or "", | |
arguments=function.get("arguments") or "", | |
), | |
index=0, | |
) | |
chat_completion_response_message = ChatCompletionResponseMessage( | |
tool_calls=[tool_call_chunk], | |
role="assistant", | |
) | |
return [chat_completion_response_message, tool_output_message] | |
return [tool_output_message] | |
def _transform_responses_api_content_to_chat_completion_content( | |
content: Any, | |
) -> Union[str, List[Union[str, Dict[str, Any]]]]: | |
""" | |
Transform a Responses API content into a Chat Completion content | |
""" | |
if isinstance(content, str): | |
return content | |
elif isinstance(content, list): | |
content_list: List[Union[str, Dict[str, Any]]] = [] | |
for item in content: | |
if isinstance(item, str): | |
content_list.append(item) | |
elif isinstance(item, dict): | |
content_list.append( | |
{ | |
"type": LiteLLMCompletionResponsesConfig._get_chat_completion_request_content_type( | |
item.get("type") or "text" | |
), | |
"text": item.get("text"), | |
} | |
) | |
return content_list | |
else: | |
raise ValueError(f"Invalid content type: {type(content)}") | |
def _get_chat_completion_request_content_type(content_type: str) -> str: | |
""" | |
Get the Chat Completion request content type | |
""" | |
# Responses API content has `input_` prefix, if it exists, remove it | |
if content_type.startswith("input_"): | |
return content_type[len("input_") :] | |
else: | |
return content_type | |
def transform_instructions_to_system_message( | |
instructions: Optional[str], | |
) -> ChatCompletionSystemMessage: | |
""" | |
Transform a Instructions into a system message | |
""" | |
return ChatCompletionSystemMessage(role="system", content=instructions or "") | |
def transform_responses_api_tools_to_chat_completion_tools( | |
tools: Optional[List[FunctionToolParam]], | |
) -> List[ChatCompletionToolParam]: | |
""" | |
Transform a Responses API tools into a Chat Completion tools | |
""" | |
if tools is None: | |
return [] | |
chat_completion_tools: List[ChatCompletionToolParam] = [] | |
for tool in tools: | |
chat_completion_tools.append( | |
ChatCompletionToolParam( | |
type="function", | |
function=ChatCompletionToolParamFunctionChunk( | |
name=tool["name"], | |
description=tool.get("description") or "", | |
parameters=tool.get("parameters", {}), | |
strict=tool.get("strict", False), | |
), | |
) | |
) | |
return chat_completion_tools | |
def transform_chat_completion_tools_to_responses_tools( | |
chat_completion_response: ModelResponse, | |
) -> List[OutputFunctionToolCall]: | |
""" | |
Transform a Chat Completion tools into a Responses API tools | |
""" | |
all_chat_completion_tools: List[ChatCompletionMessageToolCall] = [] | |
for choice in chat_completion_response.choices: | |
if isinstance(choice, Choices): | |
if choice.message.tool_calls: | |
all_chat_completion_tools.extend(choice.message.tool_calls) | |
for tool_call in choice.message.tool_calls: | |
TOOL_CALLS_CACHE.set_cache( | |
key=tool_call.id, | |
value=tool_call, | |
) | |
responses_tools: List[OutputFunctionToolCall] = [] | |
for tool in all_chat_completion_tools: | |
if tool.type == "function": | |
function_definition = tool.function | |
responses_tools.append( | |
OutputFunctionToolCall( | |
name=function_definition.name or "", | |
arguments=function_definition.get("arguments") or "", | |
call_id=tool.id or "", | |
id=tool.id or "", | |
type="function_call", # critical this is "function_call" to work with tools like openai codex | |
status=function_definition.get("status") or "completed", | |
) | |
) | |
return responses_tools | |
def transform_chat_completion_response_to_responses_api_response( | |
request_input: Union[str, ResponseInputParam], | |
responses_api_request: ResponsesAPIOptionalRequestParams, | |
chat_completion_response: Union[ModelResponse, dict], | |
) -> ResponsesAPIResponse: | |
""" | |
Transform a Chat Completion response into a Responses API response | |
""" | |
if isinstance(chat_completion_response, dict): | |
chat_completion_response = ModelResponse(**chat_completion_response) | |
responses_api_response: ResponsesAPIResponse = ResponsesAPIResponse( | |
id=chat_completion_response.id, | |
created_at=chat_completion_response.created, | |
model=chat_completion_response.model, | |
object=chat_completion_response.object, | |
error=getattr(chat_completion_response, "error", None), | |
incomplete_details=getattr( | |
chat_completion_response, "incomplete_details", None | |
), | |
instructions=getattr(chat_completion_response, "instructions", None), | |
metadata=getattr(chat_completion_response, "metadata", {}), | |
output=LiteLLMCompletionResponsesConfig._transform_chat_completion_choices_to_responses_output( | |
chat_completion_response=chat_completion_response, | |
choices=getattr(chat_completion_response, "choices", []), | |
), | |
parallel_tool_calls=getattr( | |
chat_completion_response, "parallel_tool_calls", False | |
), | |
temperature=getattr(chat_completion_response, "temperature", 0), | |
tool_choice=getattr(chat_completion_response, "tool_choice", "auto"), | |
tools=getattr(chat_completion_response, "tools", []), | |
top_p=getattr(chat_completion_response, "top_p", None), | |
max_output_tokens=getattr( | |
chat_completion_response, "max_output_tokens", None | |
), | |
previous_response_id=getattr( | |
chat_completion_response, "previous_response_id", None | |
), | |
reasoning=Reasoning(), | |
status=getattr(chat_completion_response, "status", "completed"), | |
text=ResponseTextConfig(), | |
truncation=getattr(chat_completion_response, "truncation", None), | |
usage=LiteLLMCompletionResponsesConfig._transform_chat_completion_usage_to_responses_usage( | |
chat_completion_response=chat_completion_response | |
), | |
user=getattr(chat_completion_response, "user", None), | |
) | |
return responses_api_response | |
def _transform_chat_completion_choices_to_responses_output( | |
chat_completion_response: ModelResponse, | |
choices: List[Choices], | |
) -> List[Union[GenericResponseOutputItem, OutputFunctionToolCall]]: | |
responses_output: List[ | |
Union[GenericResponseOutputItem, OutputFunctionToolCall] | |
] = [] | |
for choice in choices: | |
responses_output.append( | |
GenericResponseOutputItem( | |
type="message", | |
id=chat_completion_response.id, | |
status=choice.finish_reason, | |
role=choice.message.role, | |
content=[ | |
LiteLLMCompletionResponsesConfig._transform_chat_message_to_response_output_text( | |
choice.message | |
) | |
], | |
) | |
) | |
tool_calls = LiteLLMCompletionResponsesConfig.transform_chat_completion_tools_to_responses_tools( | |
chat_completion_response=chat_completion_response | |
) | |
responses_output.extend(tool_calls) | |
return responses_output | |
def _transform_responses_api_outputs_to_chat_completion_messages( | |
responses_api_output: ResponsesAPIResponse, | |
) -> List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
] | |
]: | |
messages: List[ | |
Union[ | |
AllMessageValues, | |
GenericChatCompletionMessage, | |
ChatCompletionMessageToolCall, | |
] | |
] = [] | |
output_items = responses_api_output.output | |
for _output_item in output_items: | |
output_item: dict = dict(_output_item) | |
if output_item.get("type") == "function_call": | |
# handle function call output | |
messages.append( | |
LiteLLMCompletionResponsesConfig._transform_responses_output_tool_call_to_chat_completion_output_tool_call( | |
tool_call=output_item | |
) | |
) | |
else: | |
# transform as generic ResponseOutputItem | |
messages.append( | |
GenericChatCompletionMessage( | |
role=str(output_item.get("role")) or "user", | |
content=LiteLLMCompletionResponsesConfig._transform_responses_api_content_to_chat_completion_content( | |
output_item.get("content") | |
), | |
) | |
) | |
return messages | |
def _transform_responses_output_tool_call_to_chat_completion_output_tool_call( | |
tool_call: dict, | |
) -> ChatCompletionMessageToolCall: | |
return ChatCompletionMessageToolCall( | |
id=tool_call.get("id") or "", | |
type="function", | |
function=Function( | |
name=tool_call.get("name") or "", | |
arguments=tool_call.get("arguments") or "", | |
), | |
) | |
def _transform_chat_message_to_response_output_text( | |
message: Message, | |
) -> OutputText: | |
return OutputText( | |
type="output_text", | |
text=message.content, | |
annotations=LiteLLMCompletionResponsesConfig._transform_chat_completion_annotations_to_response_output_annotations( | |
annotations=getattr(message, "annotations", None) | |
), | |
) | |
def _transform_chat_completion_annotations_to_response_output_annotations( | |
annotations: Optional[List[ChatCompletionAnnotation]], | |
) -> List[GenericResponseOutputItemContentAnnotation]: | |
response_output_annotations: List[ | |
GenericResponseOutputItemContentAnnotation | |
] = [] | |
if annotations is None: | |
return response_output_annotations | |
for annotation in annotations: | |
annotation_type = annotation.get("type") | |
if annotation_type == "url_citation" and "url_citation" in annotation: | |
url_citation = annotation["url_citation"] | |
response_output_annotations.append( | |
GenericResponseOutputItemContentAnnotation( | |
type=annotation_type, | |
start_index=url_citation.get("start_index"), | |
end_index=url_citation.get("end_index"), | |
url=url_citation.get("url"), | |
title=url_citation.get("title"), | |
) | |
) | |
# Handle other annotation types here | |
return response_output_annotations | |
def _transform_chat_completion_usage_to_responses_usage( | |
chat_completion_response: ModelResponse, | |
) -> ResponseAPIUsage: | |
usage: Optional[Usage] = getattr(chat_completion_response, "usage", None) | |
if usage is None: | |
return ResponseAPIUsage( | |
input_tokens=0, | |
output_tokens=0, | |
total_tokens=0, | |
) | |
return ResponseAPIUsage( | |
input_tokens=usage.prompt_tokens, | |
output_tokens=usage.completion_tokens, | |
total_tokens=usage.total_tokens, | |
) | |